

© Affinity Water Limited. Based upon the Ordnance Survey map by Affinity Water Limited with the permission of Ordnance Survey on behalf of the Controler of Her Majesty's Stationery Office. © Crown Copyright and database rights 2017 Ordnance Survey 100022432. Plans are the property of Affinity Water Limited and may not be reproduced or distributed in any form (or any part) without the written permission of Affinity Water Limited. Plans are continuously being updated, so out of date plans should be destroyed and not relied upon. The position of apparatus shown on this plan is provided for guidance only and should not be relied upon as being precise. Therefore the Company accepts no responsibility in the event of inaccuracy. Service pipes are not necessarily shown on this plan. Cover is normally 915mm for mains and 750mm for communication pipes but this may vary. The actual position of apparatus must be determined on site by making hand dug trial holes. The Company requires a minimum of two working days notice of the intention to excavate trial holes. Except where prior written permission has been obtained, it is an offence under Section 174 of the Water Industry Act 1991 to operate or interfere with any valves, hydrants or other apparatus vested in Affinity Water.

APPENDIX F SITE RECONNAISSANCE PHOTOGRAPHS

PHOTOGRAPHIC LOG

Photo no. Date:

1

May 2019

Description:

Site access point located off-site towards the south west along Oakleigh Road South.

Image taken viewing north east.

Image Source: Google Street View (2020)

Photo No. Date:

2

May 2019

Description:

Eastern site access point located along Brunswick Park Road.

Imagen taken viewing north west.

3

May 2019

Description:

Eastern corner of site adjacent to Brunswick Park Road access point.

Image taken viewing south west.

Image Source: Google Street View (2020)

Photo No. Date:

4

May 2019

Description:

Bunded areas of soft landscaping located adjacent to paved roadway in the eastern part of site.

Image taken viewing south.

5 May 2019

Description:

Bunded soft landscaping located along the southern boundary of site.

Image taken viewing south west within the south eastern corner of site.

Image Source: Google Street View (2020)

Photo No. Date:

6 May 2019

Description:

Bunded soft landscaping along the southern boundary of site.

Image taken viewing east within south western corner of site.

7

May 2019

Description:

Central pond feature and adjacent soft landscaping.

Image taken viewing south east within northern part of site.

Image Source: Google Street View (2020)

Photo No. Date:

8

May 2019

Description:

Main commercial buildings of business park and increase of elevation towards the west.

Image taken viewing west.

9

May 2019

Description:

St Andrew the Apostle Greek Orthodox School located within the central park of site.

Image taken viewing south west.

Image Source: Google Street View (2020)

Photo No. Date:

10

May 2019

Description:

Northern part of site with large bunded area of soft landscaping.

Image taken viewing north west.

11

May 2019

Description:

Northern boundary of site, image taken viewing school building towards the south.

Image Source: Google Street View (2020)

Photo No. Date:

12

May 2019

Description:

Western boundary of site, image taken viewing north.

Business centre positioned left with large bunded soft landscaping towards the right.

13

May 2019

Description:

Comer Business & Innovation Centre located along the western boundary of site.

Image taken viewing west.

Image Source: Google Street View (2020)

Photo No. Date:

14

May 2019

Description:

External car parking area located off-site towards the north west.

Image taken viewing north west.

APPENDIX G TECHNICAL BACKGROUND

H1 Desk Study

Aquifer designation and Source protection zones

Note the following text relates to sites in England and Wales only.

Principal aquifer: layers of rock or drift deposit that have high intergranular and/or fracture permeability (usually providing a high level of water storage). They may support water supply and/or river base flow on a strategic scale.

Secondary A aquifer: permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

Secondary B aquifer: predominantly lower permeability layers that may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering.

Secondary undifferentiated aquifer: it has not been possible to attribute either a category A or B to a rock type. In most cases this means that it was previously designated as both a minor and non-aquifer in different locations owing to the variable characteristics.

Unproductive' strata: low permeability with negligible significance for water supply or river base flow.

The EA generally adopts a three-fold classification of source protection zones (SPZ) surround abstractions for public water supply. The Site is situated in an area defined as follows:

- Zone 1 or the 'inner protection zone' is located immediately adjacent to the groundwater source and is based on a 50-day travel time from any point below the water table to the source.
 It is designed to protect against the effects of human activity and biological/chemical contaminants that may have an immediate effect on the source
- Zone 2 or the 'outer protection zone' is defined by a 400-day travel time from a point below
 the water table to the source. The travel time is designed to provide delay and attenuation of
 slowly degrading pollutants
- Zone 3 or the 'total catchment' is the area around the source within which all groundwater recharge is presumed to be discharged at the source.

Preliminary risk assessment methodology

LCRM outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. An outline conceptual model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) contaminant linkages (contaminant–pathway–receptor) and is used as the basis for the design of the site investigation. The outline conceptual model is updated as further information becomes available, for example as a result of the site investigation.

Production of a conceptual model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution
- likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term
- low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term
- unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

- severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000)
- medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem
- mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment
- minor: harm, not necessarily significant, but that could result in financial loss or expenditure
 to resolve. Non-permanent human health effects easily prevented by use of personal
 protective clothing. Easily repairable damage to buildings, structures and services.

Once the probability of an event occurring and its consequences have been classified, a risk category can be assigned according to the table below.

		Consequences										
		Severe	Medium	Mild	Minor							
	Highly likely	Very high	High	Moderate	Moderate/low							
Probability	Likely	High	Moderate	Moderate/low	Low							
Prob	Low likelihood	Moderate	Moderate/low	Low	Very low							
	Unlikely	Moderate/low	Low	Very low	Very low							

Definitions of these risk categories are as follows together with an assessment of the further work that may be required:

- very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability; urgent investigation and remediation are likely to be required
- high: harm is likely to occur. Realisation of the risk is likely to present a substantial liability.
 Urgent investigation is required. Remedial works may be necessary in the short term and are likely over the long term
- moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe
 and it is more likely that the harm would be relatively mild. Investigation is normally required
 to clarify the risk and determine the liability. Some remedial works may be required in the
 longer term
- low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild
- very low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.

H2 Site Investigation Methodology

Ground gas monitoring

An infrared gas meter was used to measure gas flow, concentrations of carbon dioxide (CO_2) , methane (CH_4) and oxygen (O_2) in percentage by volume, while hydrogen sulphide (H_2S) and carbon monoxide (CO) were recorded in parts per million. Initial and steady state concentrations were recorded. In addition, during the first monitoring round, all wells were screened with a PID to establish if there are any interferences and cross-sensitivity of other hydrocarbons with the infrared gas meter.

Low flow groundwater sampling

Groundwater samples were retrieved using a United States Environment Protection Agency (USEPA) approved low-flow purging and sampling methodology.

The low-flow method relies on moving groundwater through the well screen at approximately the same rate as it flows through the geological formation. This results in a significant reduction in the volume of water extracted before sampling and significantly reduces the amount of disturbance of the water in the monitoring well during purging and sampling. Drawdown levels in the monitoring well and water quality indicator parameters (pH, temperature, electrical conductivity, redox potential and dissolved oxygen) are monitored during low-flow purging and sampling, with stabilisation indicating that purging is complete and sampling can begin. As the flow rate used for purging, in most cases, is the same or only slightly higher than the flow rate used for sampling, and because purging and sampling are conducted as one continuous operation in the field, the process is referred to as low-flow purging and sampling.

H3 Site Investigation Assessment Methodology

Statistical assessment

Statistical analysis of the results has been conducted in accordance with *Guidance on Comparing Soil Contamination Data with a Critical Concentration* (CIEH and CL:AIRE, 2008) as detailed in Appendix D.

Statistical analysis is utilised to establish whether the land is suitable for the proposed use under the land use planning system by attempting to answer a key question. For a site being developed the key question is: 'can we confidently say that the level of contamination on this land is low relative to some appropriate measure of risk?' More specifically, this is expressed as 'Is there sufficient evidence that the true mean concentration of the contaminant (μ) is less than the critical concentration (C_c)?', where the critical concentration could be the GAC or a site-specific assessment criterion (SSAC). The true mean (μ) is unknown and therefore a conservative estimate, termed the upper confidence limit (UCL), of this value is derived from the data. The UCL is then compared against the GAC.

In statistical terms the question above is handled through the use of a formal hypothesis – the null hypothesis and the alternate hypothesis. The statistical tests are structured to show (with a defined level of confidence, in this case 95%) which of the two hypotheses is most likely to be true, by determining whether the null hypothesis can be rejected.

For consideration under the planning regime, the null (H_0) and alternative (H_1) hypotheses are presented below.

Null and alternative hypotheses

Hypothesis	Equation	Description
Null (H ₀)	µ ≥ C _c	The true mean concentration is equal to, or greater than, the critical concentration
Alternative (H ₁)	μ < C _c	The true mean concentration is less than the critical concentration

Therefore, if the null hypothesis is accepted for a certain contaminant it can be concluded that its concentration is high relative to the critical concentration, which in the case of this assessment is taken to be the GAC/SSAC and as such the whole site may be classed as being contaminated by a particular substance.

In addition, the statistical guidance provides an outlier test (Grubbs' test) that has been used within this assessment for the identification of 'outliers' or 'hotspots'. The 'outlier' test is conducted before undertaking statistical analysis (and 'outliers' may be removed from the dataset) but **only** where the conceptual model supports this.

The statistical tests applied to the dataset are selected based on whether the data is normally or non-normally distributed. The distribution of the dataset has been assessed using the Shapiro-Wilks normality test. Where the dataset has been found to be normally distributed the one sample t-test is undertaken. Where data has been found to be non-normally distributed Chebyshev's theorem is utilised.

Reuse of suitable materials

Note the following text relates to sites in England and Wales only.

The Definition of Waste: Development Industry Code of Practice (CL:AIRE, 2011) (CoP) was developed in consultation with the Environment Agency and development industry to enable the re-use of materials under certain scenarios and subject to demonstrating that specific criteria are met. The current reuse scenarios covered by the CoP comprise

- reuse on the site of origin (with or without treatment)
- direct transfer of clean and natural soils between sites
- use in the development of land other than the site of origin following treatment at an authorised Hub site (including a fixed soil treatment facility).

The importation of made ground soils (irrespective of contamination status) or crushed demolition materials is not permitted currently under the CoP and requires either a standard rules environmental permit or a U1 waste exemption (see below).

In the context of excavated materials used on-sites undergoing development, four factors are considered to be of particular relevance in determining if the material is a waste or when it ceases to be waste:

- the aim of the Waste Framework Directive is not undermined, i.e. if the use of the material will create an unacceptable risk of pollution of the environment or harm to human health it is likely to be waste
- the material is certain to be used
- the material is suitable for use both chemically and geotechnically
- only the required quantity of material will be used.

The CoP requires the preparation of a materials management plan (MMP) that confirms the above factors will be met. This plan needs to be reviewed by a 'Qualified Person' (QP) who will then issue a declaration form to the EA. As the project progresses, data must be collated and on completion a verification report produced that shows the MMP was followed and describes any changes.

The MMP establishes whether specific materials are classified as waste and how excavated materials will be treated and/or reused in line with the CoP. The MMP is likely to form part of the site waste management plan.

APPENDIX H EXPLORATORY HOLE RECORDS

Contract:			Client:		Borehole	e:		
North London Busies	s Park - Phase	• 1	Opecprim			E	3H1	
Contract Ref:	Start: 19.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 21.08.20		48.83	E:528231.8 N:193528.1		1	of	5

I	3 2 I	3 <u>Z I</u>	Ena:	21.0	0.20	ı	or o	
Sam	ples a	and In-si	tu Tests	Water	Backfill & Instrumentation	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	>	Bacl Ins	Description of Strata	ness)	Legend
0.10-0.40 - 0.40-0.80 - 0.50	1 2 1	B B ES				MADE GROUND: Brown slightly sandy gravelly firm consistency CLAY containing occasional roots and rootlets. Sand is fine to coarse. Gravel consists of subangular fine to coarse flint and occasional brick and concrete.	(1.20)	
0.80-1.20	3	В					-	
- 1.00	2	ES				•	1.20	
- 1.20 - 1.65	1	SPT(c)	N=10			MADE GROUND: Brown and red very sandy slightly gravelly soft consistency CLAY. Sand is fine to coarse. Gravel consists of subangular	-	
1.50-2.00	4	D				fine to coarse flint and very occasional brick.	-	
1.75	3	ES					(1.30)	
_ - 2.00-2.45	2	SPT(c)	N=9				-	
<u>-</u>						o o	-	
- - 2.50 - 3.00	5	В				Drawn climbth, county climbth, growelly firms becoming stiff consistency.	2.50	
- 2.50 - 3.00 -	5	В				Brown slightly sandy slightly gravelly firm becoming stiff consistency CLAY. Sand is fine to medium. Gravel consists of subrounded fine to		
- 2 00 2 45		SPT	N=11			coarse flint. (LONDON CLAY FORMATION)	-	
- 3.00-3.45 - 3.00-3.45	3 6	D	N=11			(LONDON CLATT ONWATION)	-	
_							[
- 3.50-4.00	7	D					-	
-							-	
- - 4.00 - 4.45	8	U	27 blows				-	
-			100% recovery			•	F	
4.50 - 5.00	9	D						
-							-	
-	١,	ODT	N 40				-	
- 5.00-5.45 - 5.00-5.45	10	SPT D	N=13				-	
-							Ē	
- - -								
-							-	
- - 6.00 - 6.50	11	D					-	
-							-	
- 6.50 - 6.95	12	U	41 blows				[
	12		100% recovery				-	<u> </u>
<u>-</u>							(9.20)	<u> </u>
- -							- (3.20)	
 							-	
7.50-8.00	13	D					E	
-							-	
_ - 8.00 - 8.45	5	SPT	N=19				-	
8.00-8.45	14	D					-	
-							-	
- -							-	
					\bowtie		Ĺ	L

		Boring Pro	ogress and	Water Ob	servations		Chise	lling / Slow F	Progress	Cananal	Damadra
, nei	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General	Remarks
Š			Depth	Depth	(mm)	Depth			(1111.11111)	1. Position checked with	Cround Ponetrating
בׁ ע	19/08/20		7.40	3.15		7.40	14.10	14.30	00:33	radar, CAT and Genny	
2	20/08/20		29.70	3.15		29.69	31.20	31.50	01:20	2. No visual or olfactory	evidence of contamination
3							36.30	36.80	02:00	noted.	
2										3. 50mm diameter standp	
Ė,											Response zone 1.00m to
<u>=</u>										5.00m depth.	
5									ļ ,	All dimensions in metres	Scale: 1:50
i	Method	Inspec	tion pit -	• Plar	it		•	Drilled		Logged AMarcelo	Checked
5	Used:		ercussio		d: D a	ndo 200	0	By: A r	dy Norris	D	By: AGS

Contract:				Client:	Client:				
North London Busies	s Par	k - Phase	1	Opecprim	ne Development Limited			E	3H1
Contract Ref:	Start:	19.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	21.08.20		48.83	E:528231.8 N:193528.1		2	of	5

	IJ	74 1	3 Z I	Ena:	21.0	0.20		40.03		L.0202	23 1.0 IN: 193520. I			or C
Sa	ampl	les a	nd In-sit	tu Tests	ter	Backfill & Instru-mentation							Depth	Mate
Depth		No	Туре	Results	Water	Sackf Instr nenta				Description	of Strata		(Thick ness)	Grap Lege
9.00-9.50		15	D			W E		slightly s	andv sli	ahtly aravelly	firm becoming stiff consi	stency		
							CLAY.	Sand is	fine to n	nedium. Grav	el consists of subrounded	fine to		
9.50-9.95		16	U	50 blows			coarse	HINT. OON CLAY	/ FORM	ATION)				
9.50-9.95		10	U	100% recovery			(stratu	m copied	from 2.5	Om from prev	ious sheet)		- -	
							-	-						
													-	
10.50-11.0	00	17	D										-	
11.00-11.4	45	6	SPT	N=21									-	<u> </u>
11.00-11.4		18	D									-	-	
												-	-	
11.70-12.5	50	19	В				Croves	tiff consist	onov CI	AV			11.70	
. 1.70-12.		10	ט				(LONE	ON CLA	FORM	ATION)			-	<u> </u>
							,			,				
													- -	<u> </u>
12.50-12.9	95	20	U	63 blows									-	
				100% recovery									(2.40)	<u> </u>
													- , - -	<u> </u>
														<u> </u>
10.50 11		0.	_											H
13.50-14.0	00	21	D									-	-	
14.00-14.4	44	7	SPT	4,5/29,21			Grev C	CLAYSTO	NF				14.10	
14.00-14.4	45	22	D	for 60mm			\(LONE	ON CLAY	FORM	ATION)		\mathcal{A}	14.30	
							Grey s	tiff consist	ency CL	AY.			-	
							(LONE	ON CLAY	/ FORM	ATION)		-	-	
15.00-15.5	50	23	D										-	
10.00-10.0		20	D										-	
15 50 15 1	_												- -	
15.50-15.9	95	24	U	71 blows 100% recovery										
				1007010001019									-	<u> </u>
													-	
													- -	
16.50-17.0	00	25	D											
												-	-	
17.00-17.4	45	8	SPT	N=32									-	
17.00-17.2		26	D	IN-32										
													-	==
	Bori	ing F	rogress	and Water Ob	serva	tions		Chisell	ing / Slo	w Progress	Cananali	Dom	rles	
Date	т	ime	Bore	hole Casing	Bore Dian		Water	From	То	Duration	General F	zeme	IIKS	
Date	'	ii iiC	Dep	oth Depth	(m	m)	Depth	1 10111	10	(hh:mm)	4. On completion, borehol	e backfil	led with	
											bentonite seal to 1.00m	i, gravel t	filter to 5	5.00m
											and arisings to 36.85m.	•		
											All dimensions in metres	Scale:	1:50)

	Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow F	Progress	Canaral Damarka
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General Remarks
Date	111110	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)	4. On completion, borehole backfilled with
									bentonite seal to 1.00m, gravel filter to 5.00m and arisings to 36.85m.
						L			All dimensions in metres Scale: 1:50
Method Used:		tion pit + ercussic			ando 200	0	Drilled By: Ar	ndy Norri	Logged AMarcelo Checked By: AGS

Contract:				Client:		Borehole	e:		
North London Busies	s Pai	rk - Phase	1	Opecprim	ne Development Limited			E	3H1
Contract Ref:	Start:	19.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	21.08.20		48.83	E:528231.8 N:193528.1		3	of	5

	<u> 192</u>	1321	End:	21.0	8.20		48.83		E:5282	231.8 N:193528.1		3	of 5
Sar	nples	and In-s	itu Tests	er	ion Fi							Depth	Materia
Depth	No	Туре	Results	Water	Backfill & Instru-mentation				escription (of Strata		(Thick ness)	Graphi Legen
18.00-18.5					W E		tiff consiste	encv CLA	Υ.		-	11000)	
						(LOND	ON CLAY	FORMA	TION)		-		
18.50-18.9	5 28	U	77 blows			(stratui	т соріеа т	rom 14.30	om trom pre	vious sheet)	-		
10.50-10.5	7 20		100% recovery								-		
											-		
											-		
											-		
19.50-20.0	0 29	D									Ę	44.00\	
											Z	11.00)	
20.00-20.4		SPT	N=32								-		
20.00-20.4	5 30	D									-		
											F		
											[
											-		F===
21.00-21.50	0 31	D									ţ		
											-		
21.50-21.9	5 32	U	54 blows								F		===
			100% recovery								Ē		<u> </u>
											F		==
											-		
00 50 00 0		_									-		
22.50-23.0	0 33	D									-		
											Ė		
23.00-23.4			N=33								-		
23.00-23.4	5 34	D									-		F===
											-		
											-		<u> </u>
24.00-24.50	0 35	D									F		
24.00-24.30	0 30	' '									Ē		
											[
24.50-24.9	5 36	U	72 blows 100% recovery								-		
			100 70 1000 101								-		
											-		
						Grov a	nd groon s	andy firm	consistance	y CLAY. Sand is fine to coar		25.30	=:=:
25.50-26.0	0 37	D				(LOND	ON CLAY	FORMA	TION)	y OLAT. Galia is little to Coal	JG. [<u> </u>
_0.00 20.00	"					Ì			,		E		
	_										-		<u>:-:-:</u>
26.00-26.4 26.00-26.4	5 11 5 38		N=34								-		
_0.00 20.4											F		<u> </u>
											E		
											Ę		<u></u>
		1	1			1							I — —
E	Boring	Progres	s and Water Ob	serva	tions		Chiselli	ng / Slow	Progress	0) a :== = :	al z =	
Date	Tim	ρ	ehole Casing	Bore Diam	hole leter	Water	From	То	Duration	General F	rema	KS	
Date	1 (11)	De	epth Depth	(mı	m)	Depth	1 10111	10	(hh:mm)				
										All dimensions in metres	Coole	4.50	
		1		1			1		1	All Ultrichsions in metres	Scale:	1:50	,
Method	lno-	ection	pit + Plan	t				Drilled		Logged AMarcelo	Checked		AGS

	Boring Pr	ogress and	Water Ob	servations		Chiselling / Slow Progress			General Remarks			
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General	Remarks		
		Берит	Берит	(11111)	Берит							
									All dimensions in metres	Scale: 1:5	0	
Method Used:							Drilled By: Aı	ndy Norri	Logged AMarcelo s By:	Checked By:	AGS	

Contract:				Client:	Client:				
North London Busies	s Par	k - Phase	9 1	Opecprim	ne Development Limited			E	3H1
Contract Ref:	Start:	19.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	21.08.20		48.83	E:528231.8 N:193528.1		4	of	5

	1921	321	End:	21.0	8.20		48.83		E:5262	231.8 N:193528.1		4	of
San	nples a	and In-si	tu Tests	fe	ii & tion							Depth	Ma
Depth	No	Туре	Results	Water	Backfill & Instrumentation			[Description of	of Strata		(Thick ness)	Gr Le
27.00-27.50		D	rtodato		<u>m</u> E	Grev a	nd green s	andy firn	n consistency	/ CLAY. Sand is fine to c	narce	11033)	-
· 21.00-21.50 ·	, 39					(LONE	ON CLAY	FORMA	ATION)		oaise.		
						(stratu	m copied fi	rom 25.3	0m from pre	vious sheet)		(4.40)	-
- 27.50 - 27.95	40	U	93 blows									_	÷
-			80% recovery									-	_
-												-	-
												-	-
- - - 00 F0 00 00		_										-	-
- 28.50 - 29.00	41	D										-	_
-												F	
29.00-29.45		SPT	N=44									F	
29.00-29.45	42	D										F	
-												00.70	
-						Blue a	nd red mot	led oran	ne stiff consi	stency CLAY.		29.70	Ė
-						(LAME	ETH GRO	UP)	go oun oonon	otorioy OL711.		_	
30.00-30.50	43	В										-	_
- -												<u> </u>	
- - 30.50-30.95	44	U	99 blows									-	H-
-			100% recovery									ļ.	
- -												-	
- -												-	\vdash
-												-	
31.50-32.00	45	U										Ė	<u> -</u>
-												F	
- - 32.00-32.39	13	SPT	8,13/19,23,8									F	
- 32.00 - 32.38 -	' 13	SPI	for 15mm									F	
32.00-32.45	46	D										-	<u> </u>
-												_	
-												-	-
_ - 33.00 - 33.50	47	В										(6.90)	
-												L ` ′	H
- - - 00 F0 00 05	. 40		40511									-	
- 33.50-33.95 -	48	U	105 blows 100% recovery									-	_
-			,									F	
-												-	
-												F	<u> </u>
- - 34.50-35.00	49	D										F	-
- 34.30-33.00 -	43											[
- -												Ŀ	H-
- - 35.00-35.45		SPT	N=50									E	<u></u>
35.00-35.45 -	50	D										-	
- -												-	E
-												<u> </u>	
=					****								<u> </u>
		Dus	d \\ \\' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		day-		Oh: "	/ C'	. Dec				
В	oring	Progress Bore	s and Water Ob hole Casing	servat Borel		Water	Cniselli	ng/Slow	Progress	Genera	l Rema	arks	
Date	Time	De	_	Diam (mr	eter	vvaler Depth	From	То	Duration (hh:mm)				
		56	рат Борит	(1111	,	- opui							
										All dimonoione in metro	s Coala	4.54	
			pit + Plan	.+				 Drilled		All dimensions in metre		1:50)
Method	lnen	ection	nit + Pian								ישיישרון. ו	<u>-</u> Ω	

	Boring Pro	ogress and	Water Ob	servations		Chiselli	ing / Slow	Progress	Conoral	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks
Date	Tillie	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)		
									All dimensions in metres	Scale: 1:50
Method	Inspec	tion pit -	+ Plan				Drilled		Logged AMarcelo	Checked
Used:		ercussio		d: D a	ndo 200	0	Ву: А	ndy Norri	is By:	By: AGS

Contract:				Client:		Boreho	le:		
North London Busies	s Paı	k - Phase	1	Opecprim	e Development Limited			E	3H1
Contract Ref:	Start:	19.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	21.08.20		48.83	E:528231.8 N:193528.1		5	of	5
		, ox C	:					Τ	

	132	<u> </u>	Ena:		0.20		40.03			23 1.0 IN. 193520. I	<u> </u>	ot
Sar	nples	and In-si	tu Tests	Water	Backfill & Instru- mentation				Description of	of Strata	Depth (Thick	Ma Gr
Depth	No	Туре	Results	>	Bac				Description	or Otrata	ness)	Lε
36.00-36.50	51	D				Blue a	nd red mot	ttled oran	ige stiff consi	stency CLAY.		_
36.00-36.50 36.20-36.50		D U	150 blows			(LAME	ETH GRO	JUP) from 29 :	70m from pre	vious sheet)	Ē	
- -			40% recovery			1	-		•		36.60	
36.70-36.76	15	SPT(c)	25/50			Recov	ered as wh ETH GRO	nite and g DUP)	grey weathere	ed SILTSTONE.	36.85	× :
- - 36.80-36.83	3 16	SPT(c)	for 35mm 25/50						e terminated	at 36.85m depth.		
- -			for 15mm								-	
-											-	
-												
- -											-	
-											-	
-											<u> </u>	
-											-	
- -											-	
- -											-	
-											-	
-											-	
-											-	
- -											_	
-											-	
- -											-	
- -											-	
- - -											-	
-											-	
- -											-	
- -											-	
- -											[
-											-	
-											-	
-											<u>-</u>	
-											-	
- -											-	
-											-	
-												
- -											-	
-											-	
- - -											-	
-											-	
-											-	
- - -											-	
_		1	I			I						
E	Boring	Progress	s and Water O	oserva	tions		Chisell	ing / Slov	w Progress	0 15		
		Bore		Bore Diam	hole	Water	From	То	Duration	General R	emarks	
Date	Time	De	pth Depth	(m	m)	Depth	From	10	(hh:mm)			
										All dimensions in metres S	cale: 1:50	<u> </u>
Method	Insp	ection	pit + Plai	nt				 Drilled			Checked	,

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Conoral	Remarks	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Remains	
		Берит	Берит	(mm)	Берит			+			
									All dimensions in metres	Scale: 1:50)
Method		tion pit -					Drilled		Logged AMarcelo	Checked	AGS
Used:	ed: Cable percussion Used: Dando 20				ındo 200	0	By: A	ndy Norri	S Dy:	By:	AGS

Contract:			Client:		Borehole	e:		
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			E	3H2
Contract Ref:	Start: 17.08.20	Ground	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 18.08.20		50.08	E:528254.7 N:193470.6		1	of	5

	<u> </u>	3 Z I	Ena:	10.00	.20	50.00 E.520254.7 N. 19547 0.0	<u> </u>	or 3
Sam	ples a	and In-si	tu Tests	- G	ă , E		Depth	Material
Depth	No		Results	Water	Dackilli & Instru- mentation	Description of Strata	(Thick ness)	Graphic Legend
0.25 - 0.50-1.20 - 0.75	1 1 2	ES B ES				MADE GROUND: Brown slightly sandy gravelly firm consistency CLAY containing occasional roots and rootlets. Sand is fine to coarse. Gravel consists of subangular fine to coarse flint and occasional brick and concrete. From 0.80m becoming stiff consistency.	(1.00)	
- 1.20-1.65 - 1.20-1.65 - 1.20 - 1.50-2.00	1 2 3 3	SPT D ES D	N=6	0		Brown slightly sandy slightly gravelly firm to stiff consistency CLAY. Sand is fine to medium. Gravel consists of subangular fine to coarse flint. (LONDON CLAY FORMATION)	(1.00)	
- 2.00-2.45 - 2.00-2.45 - 2.30-3.00	2 4 5	SPT D B	N=5	0		Brown slightly gravelly stiff consistency CLAY. Gravel consists of very occasional angular to subangular flint. (LONDON CLAY FORMATION)	2.00	
- - 3.00-3.45 - -	6	U	10 blows 100% recovery	0			- - - -	
3.50-4.00	7	D		•			(4.00)	
- - 4.00-4.45 - 4.00-4.45	3 8	SPT D	N=5	0			(4.00)	
4.50-5.00	9	D		0			- - - -	
5.00-5.45	10	U	52 blows 0% recovery				- - -	
5.10-5.90 5.45-5.90	11 4	B SPT(c)	N=17				0.00	
- 6.00-7.00 	12	В				Brown occasionally blue stiff consistency CLAY. (LONDON CLAY FORMATION)	6.00	
7.00-7.45	13	U	30 blows 100% recovery				-	
- - 8.00-8.50	14	D					- - - -	
8.50-8.95 8.50-8.95	5 15	SPT D	N=19					

nel H		Boring Pro	ogress and	Water Ob	servations		Chisell	ing / Slow F	Progress	Canaral Bar	marka
i, Hemel	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General Rer	Harks
Road,			Depth	Depth	(mm)	Depth			(1111.11111)	1. Position checked with Groun	nd Depatrating
ment Ltd, 18 Frogmore R	17/08/20		5.20	3.12		4.94	34.80 38.70	35.10 39.00	01:20 01:15	radar, CAT and Genny prior radar, CAT and Genny prior 2. No visual or olfactory evider noted. 3. 50mm diameter standpipe in depth on completion. Respo 5.00m depth.	r to excavation. nce of contamination
iron										All dimensions in metres Scale	e: 1:50
(En	Method	Inspec	tion pit -	- Plar			I	Drilled		7 111101 0010	ecked AGS
Sk	Used:					ando 200	0	By: An	dv Norri	s By:	AGS

Contract:				Client:		Borehole	e:			
North London Busies	s Par	k - Phase	1	Opecprim	ne Development Limited			E	3H2	<u>.</u>
Contract Ref:	Start:	17.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End:	18.08.20		50.08	E:528254.7 N:193470.6		2	of	5	

1	921	<u>321</u>	End:	18.08			50.08		L.0202	254.7 N:193470.6	2	of
Sam	ples a	nd In-si	tu Tests	ter	Backfill & Instru- mentation						Depth	М
Depth	No	Туре	Results	Water	Sackf Instr nenta				Description of	of Strata	(Thick ness)	G
<u>'</u>		71				Brown	occasiona	llv blue s	tiff consisten	cv CLAY.	- (6.20)	┢
						(LOND	ON CLAY	FORMA	TION)		(0.20)	E
-					>>>>	(stratur	n copied f	rom 6.00	m from previ	ious sheet)		<u> </u>
9.50-10.00	16	D									ŧ	Ŀ
-											Ŀ	<u>[</u>
_ - 10.00-10.45	17	U	51 blows								-	H
- 10.00-10.43	''	U	100% recovery		>>>>						F	<u> -</u>
-			_								F	[-
-					*****						F	-
- -					*****						F	-
- - - - 44 00 44 50	100	6									F	
- 11.00-11.50 -	18	D			*****						Ē	<u> </u> -
- -					*****						ļ.	-
11.50-11.95	6	SPT	N=32								ļ.	-
11.50-11.95	19	D									ļ.	
-											_	<u> </u> -
_ _											12.20	
12.20-13.00	20	В				Grey st	iff consiste	ency CLA	Y.		Ŀ	1
-						(LOND	ON CLAY	FORMA	IION)		E	1-
-											F	E-
-											F	<u> </u>
- - 13.00-13.45	21	U	60 blows								F	E
_			100% recovery									Ŀ
-					*****						ļ.	F
-											-	<u> </u>
=											Ŀ	H
_ - 14.00-14.50	22	D									-	-
- 14.00 14.00					*****						-	
_					*****						-	F
14.50-14.95	7	SPT	N=21								F	<u> -</u>
14.50-14.95	23	D									F	
-											F	<u> </u> -
-											F	-
-											F	E
15.50-16.00	24	D									Ē	
=											ļ.	-
-												-
16.00-16.45	25	U	62 blows								<u> </u>	E
=			100% recovery								ŧ	-
_											Ŀ	_
					*****						F	-
-											F	Ŀ
- 17.00-17.50	26	D									F	<u> </u> -
-											ţ	H-
-	1	65-									ţ	1-
- 17.50-17.95 - 17.50-17.95	8 27	SPT D	N=23								ţ	
_ 17.30-17.93	21	D									-	-
					*********							-
R	orina [[]	Ornares	s and Water Ob	servati	ons		Chiselli	na / Slov	Progress			
	y I	Bore		Boreh		Vater	J11130111	g, 510W	Duration	General F	Remarks	
Date	Time	De	_	Diame (mm	eter	Depth	From	То	(hh:mm)			
		Del	рит Берит	(11111)	') '	Эерин				4. On completion, borehol	e backfilled with	١
										bentonite seal to 1.00m and arisings to 36.85m	n, gravel filter to	5.00
										and anomys to solosin	•	
										L	Scale: 1:50 Checked	
Method		ection	pit + Plan					Drilled		Logged AMarcelo		

	Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow F	Progress	Canaral Damarka			
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General Remarks			
Date	111110	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)	4. On completion, berehole backfilled with			
									4. On completion, borehole backfilled with bentonite seal to 1.00m, gravel filter to 5.00m and arisings to 36.85m. All dimensions in metres Scale: 1:50			
						L			1.00			
Method Used:		tion pit + ercussic			ando 200	0	Drilled By: Ar	ndy Norri	Logged AMarcelo Checked By: AGS			

Contract:				Client:		Borehol	le:		
North London Busies	s Paı	k - Phase	e 1	Opecprim	e Development Limited			E	3H2
Contract Ref:	Start:	17.08.20	Ground	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	18.08.20		50.08	E:528254.7 N:193470.6		3	of	5
			_						

	<u> </u>	3 2 I	Ena:	18.08.20	50.06	E:320234./ N:1934/U.0	<u> </u>	or 3
			tu Tests	Water Backfill & Instru- mentation		Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	W Back		Description of ottata	ness)	Legend
-					Grey stiff consistency CL	AY.	-	
-					(LONDON CLAY FORM)	ATION)	-	
18.50-19.00	28	D			(stratum copied from 12.2	20m from previous sheet)	-	
10.50-19.00	20	D					-	
-							-	
19.00-19.45	29	U	60 blows				F	
-			100% recovery				F	
-				l 💥			-	
E							E	
E							E	
20.00-20.50	30	D		l 💥			F	
-							F	
20.50-20.95	9	SPT	N=22				-	
20.50-20.95	31	D	11-22				(17.30)	
F				l 💥			(17.50)	
-				l 💥			-	
-				l 💥			-	
24 50 22 00	20	D					-	
21.50-22.00	32	D					-	
-				l 💥			-	
22.00-22.45	33	U	68 blows				-	
			100% recovery				-	
							-	
							-	
-				l 💥			-	
23.00-23.50	34	D		l 💥			-	
-							-	
00 50 00 05	40	ODT	N. 00	l 💥			-	
23.50-23.95 23.50-23.95	10 35	SPT D	N=22				-	
20.00 20.00							-	
-							-	
-							- -	
<u> </u>		_		l 💥			-	
- 24.50-25.00	36	D		l 💥			-	
-							-	
25.00-25.45	37	U	73 blows				-	
			100% recovery				-	
							-	
ļ.							ţ	<u> </u>
t							Ė	
26.00-26.50	38	D					-	
		_					_	
t							ţ	
26.50-26.95	11	SPT	N=34				ţ	<u> </u>
26.50-26.95	39	D					ţ	
			L	L XXXXX			L	

	Boring Pro	ogress and	Water Ob	servations		Chisell	ing / Slow l	Progress	Conoral	Remarks	
Date	Time Borehole Casing Depth Depth				Water	From	То	Duration (hh:mm)	General	Remarks	
		Depth	Depth	(mm)	Depth			(1111.111111)			
									All dimensions in metres	Scale: 1:50)
Method	mopostion pit						Drilled		Logged AMarcelo	Checked	
Used:	Jsed: Cable percussion Used: Dando 20				ando 200	0	By: A	ndy Norr	is By:	By:	AGS

Contract:				Client:			Borehole	:		
North London Busies	s Par	k - Phase	1	Opecprim			E	3H2		
Contract Ref:	Start:	17.08.20	Ground	d Level (m AOD):	National Grid Co-ord	inate:	Sheet:			
1921321	End:	18.08.20		50.08	E:528254.7 N	N:193470.6		4	of	5

I	<u> </u>	<u> </u>	Ena:	18.0	0.20		50.00			.54.7 IV. I			4	or o
Sam	ples a	and In-si	tu Tests	ter	≓ y tion								Depth	Mater
Depth	No	Туре	Results	Water	Backfill & Instru-mentation			[Description of	of Strata			(Thick ness)	Graph Leger
<u>'</u>		71			W -	Grev st	iff consiste	encv CL/	ΑΥ.					
						(LOND	ON CLAY	FORMA	ATION)					
		_				(stratur	n copied f	rom 12.2	20m fróm pre	vious sheet)			•	<u> </u>
27.50-28.00	40	D												<u> </u>
												-		
28.00-28.45	41	U	85 blows										-	H
20.00 20.10	'		90% recovery											<u> </u>
												-		<u> </u>
												1		
												-		
29.00-29.50	42	D											-	
														H
		6=-											29.50	
29.50-29.85	12	SPT	6,6/7,18,21 for 50mm			Green	and grey s ETH GRC	andy stif	f consistency	/ CLAY. San	d is fine to me	dium.		<u> </u>
29.50-29.95	43	D	101 30111111			(LAIVIB	EIN GRU	JUP)				<u> </u>		[- -
												-	-	<u> </u> -
												ļ		
00 50 5 : :		_										ļ		
30.50-31.00	44	D										<u> </u>	(2.50)	<u> </u>
												ļ	· '	<u> </u>
31.00-31.45	45	U	122 blows									ļ	-	[-
			30% recovery									ļ	•	===
31.45-31.90	46	D										ļ		<u> </u>
1.40-31.90	40	U										-		
												ļ	32.00	<u> </u>
		_				Blue ar	nd red and	orange s	stiff consister	ncy CLAY.			JZ.UU	Ħ
32.10-33.00	47	В				Oc	casional s	iltstone b	stiff consister pands.			<u> </u>		<u> </u>
												ļ	•	
												ļ	•	[-
												-		H
33.00-33.45	48	U	116 blows									<u> </u>	-	
			85% recovery									<u> </u>		
												<u> </u>		<u> </u>
												ļ	•	<u> </u>
												ļ		[
34.00-34.50	49	D										ļ	-	H
												ļ		<u> </u>
04 50 04 05	40	CDT	N-00									ļ		F
34.50-34.95 34.50-34.95	13 50	SPT D	N=38									ļ		H
0 1.00												ļ		<u> </u>
												ļ	-	[-
												ļ		H-
35 50 36 00	E4											ļ		[-
35.50-36.00	51	D										ļ	•	<u> </u>
				L										
					X X X									
B	oring I	rogress	and Water Ob				Chiselli	ng / Slov	v Progress	/	General	Domo	rks	
Date	Time	Bore		Bore Diam	neter	Water	From	То	Duration (bb:mm)		Jeileiai	ı v e ille	6/1 II	
		Dep	oth Depth	(mı	m)	Depth			(hh:mm)					
										All dimension	ons in metres	Scale:	1:50)
			1		1			1	1					
Method I	nsna	ection	pit + Plant	t				Drilled	•	Logged	AMarcelo	Checke		AG

	Boring Pr	Water Ob	servations		Chisell	ing / Slow	Progress	Conoral	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Remains	
		Берит	Берит	(mm)	Берит			+			
									All dimensions in metres	Scale: 1:50)
Method							Drilled		Logged AMarcelo	Checked	AGS
Usea:	sed: Cable percussion Used: Dando 20						By: A	ndy Norri	S Dy:	By:	AGS

Contract:				Client:			Borehol	e:		
North London Busies	s Par	k - Phase	1	Opecprii	ne Development Limi	ted			BH2	
Contract Ref:	Start:	17.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:		Sheet:			
1921321	End:	18.08.20		50.08	E:528254.7 N:193	470.6		5	of 5	
Samples and In-situ Tests		'ater kfill & stru-			Description of Strata			Depth (Thick	Materia	

	<u> </u>	3 2 I	Ena:	10.00.2		50.06	E:320234./ N:1934/U.0	ົ	or 3
Sam	oles a	nd In-si	tu Tests	Water	mentation		Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	Wash	ment	'		ness)	Legend
36.00-36.45	52	U	138 blows 80% recovery			Blue and red and orange (stratum copied from 32.0	stiff consistency CLAY. 10m from previous sheet)	(8.36)	
37.00-37.50	53	D						- - - - - -	
37.50-37.95 37.50-37.95	14 54	SPT D	N=51					- - - - - - - -	
- - 38.50-39.00	55	В						- - - - -	
39.00-39.45 39.00-39.45	15 56	SPT D	N=51					 - - - -	
39.50-40.00	57	D						- - - - -	
- 40.00-40.36 - 40.00-40.36	16 58	SPT D	8,12/19,15,16 for 60mm					40.36	
						Casic percussion porchor	e terminated at 40.36m depth.		
								- - - - -	

		Boring Pro	ogress and	Water Ob			Chisel	ling / Slow	Progress	Cono	rol	Remar	·kc	
	Date	Time	Borehole	•	Borehole Diameter	Water	From	То	Duration (hh:mm)	Gene	ıaı	Remai	KS	
5	2 4.10		Depth	Depth	(mm)	Depth			(1111.111111)				-	
2														
Î														
										A 11 12				
										All dimensions in m	etres	Scale:	1:50	
i	Method	Inspec	tion pit -	⊦ Plan	t			Drilled		Logged AMarc	elo	Checked		
!	Used:	Used: Cable percussion Used:				ando 200	00	By: Andy Norri		i s By:		By:		AGS

Contract:					Client:		Borehole	e:		
Nort	h London Busies	s Par	k - Phase	e 1	Opecprim	e Development Limited			E	3H3
Contract F	Ref:	Start:	13.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
	1921321	End:	14.08.20		50.85	E:528260.0 N:193425.2		1	of	5

1,	<i>J</i>	3 Z I	Ena:	14.08.20	50.05	E:520260.0 N: 193425.2	<u> </u>	or 3
Samr	les a	nd In-si	tu Tests	<u>~</u> ∞ . e			Depth	Material
Depth	No		Results	Water Backfill & Instru- mentation		Description of Strata	(Thick ness)	Graphic
- - 0.20 - 0.40 - 0.60-1.00	1 2 1	ES ES B			MADE GROUND: Brown Gravel consists of suban	sandy gravelly CLAY. Sand is fine to coar gular fine to coarse flint and occasional br contains occasional roots and frequency	se. ick (0.60)	
0.75	3	ES				nd brown SAND and GRAVEL. Sand is fine	e to 1.00	
	4	ES SPT	N-F		coarse. Gravel consists of At 0.60m concrete ob	subangular fine to coarse concrete rubble.	1.30	
- 1.20-1.65 - 1.20-1.65 - 1.50-2.00	1 2 3	D B	N=5		CLAY. Sand is fine to m fragments.	sandy slightly gravelly soft to firm consister ledium. Gravel consists of occasional conf	ete -	- x - x - x - x - x - x - x - x - x - x
 - 2.00-2.45 	4	U	33 blows 100% recovery		Brown silty firm consisten (LONDON CLAY FORM/	cy CLAY. ATION)	-	XX
- - 2.70 - 3.00	5	D					E	
 - 3.00-3.45 - 3.00-3.45	2	SPT D	N=4				- - - -	
3.50-4.00	7	D					- - - -	× -×
- - 4.00-4.45 -	8	U	17 blows 100% recovery				-	
4.50-5.00	9	D					-	xx xx
- 5.00-5.45 - 5.00-5.45 	3 10	SPT D	N=18	. П П			- - - - - - -	X X
- - 6.00-6.50	11	D			Between 6.00m and 8	8.00m becoming slightly sandy.	- - - -	- x - x
- - 6.50-6.95 - - - -	12	U	42 blows 100% recovery				(10.50) [- - -	
- - - - - - - - - - - - - - - - - - -	13	D					- - - - -	X X X
- 8.00-8.45 - 8.00-8.45 	4 14	SPT D	N=20				- - - - - - - -	X X X

		Boring Pro	ogress and	Water O	oservations		Chiselli	ing / Slow F	Progress	General Remarks
D	ate	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General Remarks
			2 spui	23941	()	Sopul	12.20 20.20	12.40 20.40	00:33 00:33	 Position checked with Ground Penetrating radar, CAT and Genny prior to excavation. No visual or olfactory evidence of contamination noted. 50mm diameter standpipe installed to 5.00m depth on completion. Response zone 1.00m to 5.00m depth.
										All dimensions in metres Scale: 1:50
Met Use	thod ed:		tion pit -			ando 200		Drilled By: A n	ıdv Norri	Logged AMarcelo Checked By:

Contract:				Client:		Borehole	э:		
North London Busies	s Par	rk - Phase	e 1	Opecprim	ne Development Limited			E	3H3
Contract Ref:	Start:	13.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	14.08.20		50.85	E:528260.0 N:193425.2		2	of	5

	1	921	321	End:	14.08	3.20	50.85	E:528260.0 N:193425.2	2	of 5)
				tu Tests	Water	Backfill & Instru- mentation	I	Description of Strata	Depth (Thick	Graph	hic
	Depth	No	Type	Results	>	Ba ne		•	ness)	Leger	nd
	9.00-9.50	15	D				Brown silty firm consistent (LONDON CLAY FORMA (stratum copied from 1.30	ATION)	-		
	9.50-9.95	16	U	38 blows 100% recovery			(-	x x x	
	- - 10.50-11.00	17	D						- - - - -		
	11.00-11.45 11.00-11.45	5 18	SPT D	N=22					11.80	x x	-
-	12.00-12.50	19	В				Grey stiff consistency CL/ (LONDON CLAY FORMA	AY. NTION)	- - - - -	×	
-	- 12.50-12.95	20	U	53 blows 100% recovery					- - - - -		
-	13.50-14.00	21	D						- - - - - -		
	- 14.00-14.45 - 14.00-14.45	6 22	SPT D	N=26					- - - - - -		
	- - - -								- - - - -		
	15.00-15.50	23	D	55 blove					- - - - - -		
	- 15.50-15.95 - - - - - - - - -	24	U	55 blows 100% recovery					-		
	16.50-17.00	25	D						- - - -		
	17.00-17.45 17.00-17.45	7 26	SPT D	N=32					-		
	-								[<u> </u>	

	Boring Pr	ogress and				Chise	lling / Slow	Progress	General	Remarks
Date	Time	Borehole		Borehole Diameter	Water	From	То	Duration (hh:mm)	Ochiciai	i (Ciriai No
		Depth	Depth	(mm)	Depth			(1111.111111)	4. On completion, boreho	ole backfilled with
	Depth Depth (mm) Depth									n, gravel filter to 5.00m
									All dimensions in metres	Scale: 1:50
Method Used:	mopoditon pit					Drilled By: And		ndy Norri	Logged AMarcelo By:	Checked By: AGS

Contract:				Client:			Borehole	:		
North London Busies	s Paı	k - Phase	1	Opecprim			E	3H3		
Contract Ref:	Start:	13.08.20	Ground	d Level (m AOD):	National Grid (Co-ordinate:	Sheet:			
1921321	End:	14.08.20		50.85	E:52826	0.0 N:193425.2		3	of	5

	13	921	JZ I	End:	14.0			50.85		L.0202	260.0 N:193425.2		3	of
Sa	ampl	les a	nd In-si	tu Tests	Water	Backfill & Instru- mentation				Dosorintian	of Strata		Depth (Thick	Ma Gr
Depth		No	Туре	Results	×	Back Inst				Description o	di Sirata		(Thick ness)	Le
- 18.00-18.	50	27	D				Grey sti	ff consiste	ency CL	AY.		-	,	=
-							(LOND)	ON CLAY	FORM	ATION) 80m from pre	vious sheet)	E		
- - 18.50-18.9	95	28	U	70 blows			(Straturi	copied ii	10111 1 1.6	oun nom pre	vious srieet)	-		
-				100% recovery								-		=
- -												-	-	=
-												-		
-												-		
19.50-20.0	00	29	D									E		
-												-		
_ - 20.00-20.3	30	8	SPT	5,7/22,28									-	
-		20		for 70mm								-		=
20.00 - 20.4	15	30	D											
-												-		
-												F		_
21.00-21.5	50	31	D									[
												-		
- - 21.50-21.9	95	32	U	74 blows								ļ		E
-				100% recovery								ļ.	(20.20)	
- -												ļ'	(_3. _ 0) -	
- -												F		=
-												E		_
22.50-23.0	00	33	D									E		-
- -												[=
_ - 23.00-23.4	15	9	SPT	N=34								-	-	
23.00-23.4	15	34	D									ļ		
-												ļ		
- - -												F		=
-												E	_	<u> </u>
24.00-24.5	50	35	D											E
- -														
24.50-24.9	95	36	U	77 blows								ļ		
-				100% recovery								F		
_												E	_	<u> </u>
-												E		
			_									-		<u> </u>
- 25.50-26.0 -	טט	37	D									ļ		<u> </u>
-												ļ		F
- - 26.00-26.4		10	SPT	N=37								F	-	\equiv
26.00 - 26.4	15	38	D									E		<u> </u>
- -												[-
- -												ļ		
-													-	<u> </u>
	Bori	ing F	Progress	s and Water Ob	servat	ions		Chiselli	ng / Slov	v Progress	-			
		ime	Bore		Borel Diam	nole \	Vater	From	То	Duration	General	Rema	rks	
Date	I	irrie	Dep	pth Depth	(mr	n) I	Depth	1 10111	10	(hh:mm)				
											All dimensions in metres	Scale:	1:50)
				pit + Plant					Drilled		Logged AMarcelo	Checke		

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Conoral	Remarks	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Remains	
		Берит	Берит	(mm)	Берит			+			
									All dimensions in metres	Scale: 1:50)
Method						Drilled		Logged AMarcelo	Checked	AGS	
Usea:	Used: Cable percussion Used: Dando 20			ındo 200	0	By: A	ndy Norri	S Dy:	By:	AGS	

Contract:				Client:		Borehole	э:		
North London Busies	s Par	rk - Phase	e 1	Opecprime Development Limited				E	3H3
Contract Ref:	Start:	13.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			-
1921321	End:	14.08.20		50.85	E:528260.0 N:193425.2		4	of	5

	192	. 132		Ena:	17.0	0.20		50.65		L.020	260.0 N. 193425.2	4	or s
Sa	mples	s and I	n-situ	Tests	ter	Backfill & Instru-mentation						Depth	
Depth	N	о Ту	ре	Results	Water	Backf Instr nenta				Description	of Strata	(Thick ness)	
27.00-27.5				. 100010		<u> </u>		tiff consist	ency CI	AY		11033)	
27.00 27.0							(LONE	ON CLAY	/ FORM	ATION)		-	
07.50.07.0			.	0411			(stratu	m copied i	from 11.	80m from pre	evious sheet)	-	
27.50-27.9	95 40	0 1		81 blows 100% recovery								-	
				1007010007019								-	
•												-	
												[<u> </u>
28.50-29.0	00 4	1 [,									E	
												-	
			_									-	-
29.00-29.4 29.00-29.4				N=47								ļ.	
												-	-
												E	
												[-
-												-	
30.10-30.4	10 4	3 [)									ļ	<u> </u>
00 50 00 0	<u>, , </u>		.	04 51								Ė	<u>L</u> -
30.50-30.9	95 4	4 L		91 blows 75% recovery								Ė	F
				2.1.75551619								Ė	<u> </u>
-												E	F-
												E	<u> </u>
31.50-32.0	00 4	5 E	,									ļ.	<u> </u>
02.0	1											ļ	<u> </u>
	_ _		_							1 1	P 1 (1) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1 (100) 1	32.00	=
32.00-32.4 32.00-32.4				N=49			Occas CL AV	ionally blu Sand is fi	e grey a	nd red silty s dium	lightly sandy very stiff consister	ncy	×
	- "	-					(LAME	SETH GRO	DUP)	Jaiuiii.		F	×-
32.60-33.5	50 4	7 E					Ì		•			E	× ,
32.00-33.0	~ ~	' '	'									t	>
												-	× ;
												-	<u>x•</u>
33.50-33.9	95 48	8 L	.	108 blows								F	<u></u>
33.30-33.8	5 4			90% recovery								F	
_												[×
												E	x•
												-	<u>, , , , , , , , , , , , , , , , , , , </u>
34.50-35.0	00 4	9 [-	×>
												F	×
35.00-35.4	 4 1:	3 SF	σ .	7,7/9,12,15,14								F	×-
				for 65mm								t	>
35.00-35.4	15 5	0 0)									-	× →
												-	×
												(8.00)	\
		•				XX							•••
. !	Borin			and Water Ob				Chisell	ing / Slo	w Progress	General Re	marke	
Date	Tin	ne I	Boreho		Borel Diam	eter	Water	From	То	Duration (hh:mm)	Ochiciai Ne	HIGHNS	
			Deptl	h Depth	(mr	m)	Depth			(1111.11111)			
											All dimensions in metres Sca	ale: 1:5	n
												<u></u> 1.J	<u> </u>

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Conoral	Remarks	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General	Remarks	
					·						
									All dimensions in metres	Scale: 1·50	
Method	Inspec	tion pit -	+ Plan			I	Drilled		Logged AMarcelo	Checked	AGS
Used:	Jsed: Cable percussion Used: Dando 20			ando 200	0	By: A	ndy Norri	is By:	Ву:	AGS	

Contract:				Client:		Borehole	e:		
North London Busies	s Par	k - Phase	1	Opecprim	ne Development Limited			E	3H3
Contract Ref:	Start:	13.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	14.08.20		50.85	E:528260.0 N:193425.2		5	of	5

1	921	321	End:	14.08	3.20	50.85	E:528260.0 N:193425.2	5	of 5
	_		tu Tests	Water	Backfill & Instru- mentation		Description of Strata	Depth (Thick	Graphic
Depth - 36.00-36.50	No 51	Type D	Results		% = ₽ ₩ = ₽	Occasionally blue grey ar	nd red silty slightly sandy very stiff consis	ness)	Legend
- 36.50-36.95 	52	U	136 blows 85% recovery			CLAY. Sand is fine to me (LAMBETH GROUP) (stratum copied from 32.0	dium. 00m from previous sheet)	- - - - - - - - -	x - x - x - x - x - x - x - x - x - x -
37.50-38.00	53	D						- - - - -	× · · · ×
38.00-38.34	14	SPT	14,11/16,18,16					-	xx
38.00-38.45	54	D	for 60mm					- - - - -	- x - x - x - x - x - x - x - x - x - x
39.00-40.00	55	В						40.00	× · · × · · × · · × · · × · · × · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · × · · · · × · · · · × ·
40.00-40.31	15	SPT	16,9/18,18,14		******	Cable percussion borehol	e terminated at 40.00m depth.	40.00	x - x
40.00-40.32	56	D	for 50mm					-	

ſ		Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow	Progress	Conoral	Domorko		
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks		
	Date	Tillic	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)				
: [All dimensions in metres	Scale: 1:50		
. [Method				t			Drilled		Logged AMarcelo	Checked		
: [Used: Cable percussion		on Use	d: D a	ando 200	00	Ву: А	ndy Norri	is By:	By:	AGS		

Contract:				Client:		Borehole	e:			_
North London Busies	s Pai	rk - Phase	e 1	Opecprim			E	3H4	ŀ	
Contract Ref:	Start:	02.09.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End:	04.09.20		52.47	E:528151.6 N:193362.3		1	of	4	

I	1921321 End				52.47 E.520 15 1.0 IV. 195302.3	<u> </u>	or 4
Sam	ples a	nd In-si	tu Tests	Water Backfill & Instru-	Description of Strata	Depth (Thick	
Depth	No	Туре	Results	W; Back Ins		ness)	Legend
- 0.20-0.50 - 0.25	1 1	B ES			MADE GROUND: Brown sandy gravelly soft consistency CLAY containing roots and rootlets. Sand is fine to coarse. Gravel consists of subrounded fine to coarse flint and subangular fine to coarse brick. conrete, asphalt and occasional clinker.	(0.60)	
- 0.60-1.20 - 0.75 -	2 2	B ES			MADE GROUND: Brown sandy gravelly firm consistency CLAY. Sand is fine to coarse. Gravel consists of subrounded fine to coarse flint and subangular fine to coarse brick and concrete.	(1.10)	
- 1.20-1.65 - 1.20-1.60 - 1.50 - 1.60-2.00	1 3 3 4	SPT B ES B	N=4		Brown slightly gravelly firm becoming stiff consistency CLAY. Gravel	1.70	
2.00-2.45 2.00-2.45	2 5	SPT D	N=8		consists of subrounded fine to coarse flint. (LONDON CLAY FORMATION - WEATHERED) Gravel content decreasing with depth.		
2.50-3.00	6	В				- - - -	
3.00-3.45 3.00-3.45	3 7	SPT D	N=11			- - - -	
- 3.50-4.00 - - -	8	В	N=18			(4.80)	
- 4.00-4.45 - 4.00-4.45 - 4.50-5.00	9	SPT D B	N=18			-	
- 5.00-5.45 - 5.00-5.45	5	SPT D	N=20			-	
- - - - -						- - - -	
- - 6.00-6.50 - -	12	В				6.50	
- 6.50-6.60 - 6.50-7.00 -	13 14	U B	120% recovery		Brown and grey stiff consistency CLAY. (LONDON CLAY FORMATION)	- - -	
- - - 7.50-8.00	15	В				(1.50)	
- - - 8.00-8.45	16	U	100% recovery		Grey stiff consistency CLAY. (LONDON CLAY FORMATION)	8.00	
8.45-8.60	17	D			Containing occasional claystone bands.	-	

	Boring Pro	ogress and	Water Ob	servations		Chisell	ing / Slow F	Progress	General F	Domarka
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General r	Remarks
		2 spui	Бори	()	Sopul	6.50 32.10	6.60 32.10	00:50 02:00		prior to excavation. vidence of contamination ntered.
Method Used:	mopostion pit			t ^{d:} D a	ando 200		Drilled By: A n	dy Norri	Logged AMarcelo By:	Checked By: AGS

Contract:				Client:	Client:				
North London Busies	s Park	- Phase	1	Opecprim	e Development Limited			E	3H4
Contract Ref:	Start: 0	2.09.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 0	4.09.20		52.47	E:528151.6 N:193362.3		2	of	4

1	<u>921</u>	321	End:	04.09	9.20	52.47	E:528151.6 N:193362.3	2	of 4
	oles a		tu Tests Results	Water	Backfill & Instru- mentation	D	escription of Strata	Depth (Thick	Graphic
Depth		Type	Results		B E			ness)	Legend
- 9.00-9.50	18	В				Grey stiff consistency CLA	Y.	-	
F						(LONDON CLAY FORMA	TION)	-	
0.50.005		SPT	N-05		*****	(stratum copied from 8.00)	m from previous sneet)	F	
- 9.50-9.95 - 9.50-9.95	6 19	D D	N=25		******			-	
0.00 0.00								‡	
-								-	
E					*****			t	
-					*****			-	
10.50-11.00	20	В			>>>>			F	
								ļ.	
L					******			Ŀ	
11.00-11.45	21	U	100% recovery		*****			Ł	
-								-	
11.45-11.60	22	D			*****			Ė	
11.40 11.00								ţ	
					*****			_	
12.00-12.50	23	В			******			-	
12.00-12.00	20	Ь						-	
F					*****			F	
12.50-12.95	7	SPT	N=27		*****			‡	
12.50-12.95	24	D						t	
-					******			-	
F					*****			F	
-								-	
					*****			ţ	
13.50-14.00	25	В			*****			ŀ	
-					*****			-	
14.00-14.45	26	U	100% recovery		*****			-	
14.00-14.45	20	U	100% recovery		******			F	
					*****			-	
14.45-14.60	27	D						ţ	
E					*****			Ŀ	
-					>>>>			-	
15.00-15.50	28	В			$\times\!\!\times\!\!\times$			F	
F					XXXX			F	
45.50 (5.5		0.5-						ļ.	
- 15.50-15.95 - 15.50-15.95	8 29	SPT D	N=42		******			ţ	-
15.50-15.95	29	D			>>>>			Ł	
F								-	
F					*****			F	
F					$\times\!\!\times\!\!\times$			ļ.	
16.50-17.00	30	В						ţ	<u> </u>
_		_						Ę	
Ł					******			}	
17.00-17.45	31	U	100% recovery					(18.30)	
F					>>>>			ļ.	
17.45-17.60	32	D						ţ	
17.43-17.00	32	D			\ggg			ţ	
_					XXX			Ł	HI
					*******				<u> </u>

	Boring P	rogress and	Water Ob	servations		Chisel	ling / Slow	Progress	General Remarks
Date	e Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General Remarks
Date	Tillic	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)	5.00m depth.
								5. On completion, borehole backfilled with bentonite seal to 1.00m, gravel filter to 5.00m and arisings to 32.10m.	
									All dimensions in metres Scale: 1:50
Metho Used:	Method Inspection pit + Cable percussion			Plant Used: Dando 2000			Drilled By: A	ndy Norr	Logged AMarcelo Checked By: AGS

Contract:			Client:	Client:					
North London Busies	s Par	k - Phase	e 1 Opecprin	Opecprime Development Limited					
Contract Ref:	Start:	02.09.20	Ground Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End:	04.09.20	52.47	E:528151.6 N:193362.3		3	of	4	

L	1;	1921321 End:				52.47	E:528151.6 N:193362.3	3	of 4
	-			tu Tests	Water Backfill & Instru-		Description of Strata	Depth (Thick	Material Graphic
	Depth	No	Type	Results	Bac V	'	seconpain or estata	ness)	Legend
ļ	18.00-18.50	33	В			Grey stiff consistency CL	AY.	-	
ļ					│	(LONDON CLAY FORMA	ATION)	-	
į	10 50 10 05	•				(stratum copied from 8.00	m from previous sheet)	-	
ļ	18.50-18.95	9	SPT	N=35				-	
								-	
	-							-	
İ								-	
ļ			_					-	<u> </u>
ŀ	19.50-20.00	34	В		│			-	
ŀ								-	
ŀ	20.00-20.45	35	U	100% recovery				-	
Į				,	│			-	
ŀ	20 45 20 60	26	D					_	
ŀ	20.45-20.60	36	D					_	
-					│			t	
ŀ	21.00-21.50	37	В					-	
ŀ	21.00 21.00	01						E	
ŀ								Ł	
ŀ	21.50-21.95	10	SPT	N=50				Ł	
ŀ	21.50-21.95	38	D		│			-	
F	- -							F	 -
F								-	
F								F	
F	22.50-23.00	39	В					F	
F								F	
F	23.00-23.45	40	U	100% recovery				F	
F	23.00-23.43	40	U	100 % recovery				F	
Ī								-	
Ī	23.45-23.60	41	D					-	
Ī								-	
ŀ	24.00-24.45	42	В					F	
ļ	24.00-24.43	42	ט					-	[
ŀ								F	
F	24.50-24.94	11	SPT	5,10/12,12,14,12				-	
ŀ	24.50-24.95	43	D	for 65mm				F	[
F	-	40						F	
F								-	
ŀ								F	
F	25.50-26.00	44	В					F	
F								F	
F	26.00.26.45	45	U	100% recover:				F	
ŀ	26.00-26.45	40	U	100% recovery				26.30	
F						Grey clayey fine to coarse	SAND.	-	
ŀ	26.45-26.60	46	D			(LAMBETH GROUP)		F	[.÷.:::::]
ļ								F	[:÷:::::::
ţ					l 💹			<u> </u>	<u> </u>

	Boring Pro	ogress and	Water Ob	servations		Chise	ling / Slow I	Progress	Canaral	Domorko
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)			То	Duration (hh:mm)	General	Remarks
									All dimensions in metres	Scale: 1:50
Method Used:	mopostion pit			Plant Used: Dando 2000			Drilled By: Andy Norris		Logged AMarcelo By:	Checked By: AGS

Contract:				Client:	Borehole	e :				
North London Busies	s Par	k - Phase	1	Opecprim			E	3H4		
Contract Ref:	Start:	02.09.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End:	04.09.20		52.47	E:528151.6 N:193362.3		4	of	4	

	1921321 End:					9.20	52.47 E:528151.6 N:193362.3	4	of 4
				tu Tests	Water	Backfill & Instru- mentation	Description of Strata	Depth (Thick	Material Graphic
Depth	1	Vo	Type	Results	>	Bac m mer	2000. p. 0.1. 0.1. 0.1. 0.1. 0.1. 0.1. 0.	ness)	Legend
27.00-27. - 27.50-27. - 27.50-27.	95	12 48	B SPT D	N=54			Grey clayey fine to coarse SAND. (LAMBETH GROUP) (stratum copied from 26.30m from previous sheet)	-	
- 28.50-29.	00 4	49	В					(5.30)	
29.00-29.	45	50	U	100% recovery					
29.45-29.	60	51	D						
30.00-30.	50	52	В					-	
30.50-30.	93	13	SPT	8,11/12,14,14,10 for 55mm					
30.50-30.	95	53	D	IOI SOITIITI				-	
31.50-32.	00 8	54	В				Grey and green slightly gravelly clayey SAND. Sand is fine to coarse. Gravel consists of fine to coarse subrounded flint and chalk.	(0.50)	
32.10	,	55	С				(LAMBETH GROUP) Cable percussion borehole terminated at 32.10m depth due to refusal on	32.10	F ::
							SILTSTONE band.		

ſ		Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow	Progress	Conoral	Domorko	
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks	
	Date	Tillic	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)			
: [All dimensions in metres	Scale: 1:50	
. [Method Inspection pit +			Plant			Drilled		Logged AMarcelo	Checked		
: [Used: Cable percussion		on ^{Use}	Used: Dando 2000		00	By: Andy Norris		is By:	By:	AGS	

Contract:			Client:	Borehole	e:				
North London Busies	s Park - Phase	e 1	Opecprim			E	3H5	į	
Contract Ref:	Start: 25.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 27.08.20		49.91	E:528158.0 N:193467.0		1	of	5	

	<u> </u>	<u> </u>	⊏Hu.	27.00	J. Z U	43.31 L.320130.0 14. 133407.0		OI J
Sam	oles a	nd In-si	tu Tests	ē	∞ ' io		Depth	Material
Depth	No	Туре	Results	Water	Backfill & Instru-	Description of Strata	(Thick	Graphic
Берит	INO	Type	Results	_	<u> </u>		ness)	Legend
0.10-0.40	1	В				Brown sandy gravelly soft consistency CLAY / TOPSOIL containing frequent roots and rootlets. Sand is fine to medium. Gravel consists of	-	<u> -^</u>
0.20	1	ES				nequent roots and rootlets. Sand is line to medicin. Graver consists of subangular to subrounded flint and occasional subangular to angular p	0.40	
0.40-0.80	2	В				brick.	-	
0.60	2	ES				(TOPSOIL)	0.80	
- 0.80-1.20 -0.80-1.20	1 3	B B			۰¸۰□¸۰	MADE GROUND: Brown clayey SAND and GRAVEL. Sand is fine to coarse. Gravel consists of subangular fine to coarse flint and frequent	Ė	$\stackrel{\sim}{-}\stackrel{\sim}{-}\stackrel{\sim}{-}$
- 1.20-1.65		CDT(a)	N=6			angular to subangular fine to coarse brick and concrete.	-	
1.20-1.05	1	SPT(c)	IN-0			Brown slightly sandy slightly gravelly firm consistency CLAY. Sand is	F	
1.50-2.00	4	D				fine to medium. Gravel consists of fine to coarse subangular flint.	(0.00)	
F						(LONDON CLAY FORMATION - WEATHERED)	(2.00)	<u>· · · · · · · · · · · · · · · · · · · </u>
_ - 2.00-2.45	2	SPT(c)	N=4				-	
- 2.20-2.80	5	B B	11-4				E	<u></u>
2.20-2.00	"	Ь					E	
-							2 00	<u> -:-:-</u>
2.80-3.00	6	D				Brown occasionally blue slightly gravelly firm becoming stiff consistency	2.80	
3.00-3.45	3	SPT	N=14			CLAY. Gravel consists of subrounded fine to coarse flint.	_	
3.00-3.45	7	D				(LONDON CLAY FORMATION)	-	
						Gravel content decreasing with depth.	-	
3.50-4.00	8	D				•	-	
-							-	
- - 4.00-4.45	9	U	24 blows				-	
ţ			100% recovery		贮铝	•	-	
1.50.5.00							-	
- 4.50 - 5.00 -	10	D					-	
F							-	
5.00-5.45	4	SPT	N=16				-	
5.00-5.45	11	D					F	
F							F	
F							F	
F							F	
6.00-6.50	12	D					-	
_							-	
6.50-6.95	13	U	41 blows				-	
1.00 0.00			100% recovery				-	
_							(8.50)	<u> </u>
-					\bowtie		- ()	
-							<u> </u>	<u> </u>
7.50-8.00	14	D					-	
ļ.							-	
	_	057			\bowtie		<u> </u>	[
8.00-8.45 8.00-8.45	5 15	SPT D	N=19				-	
5.55 6.46		,			\bowtie		-	
8.50-9.00	16	D					-	<u> </u>
F					\bowtie		F	
F	I			1	KXXXXX	ý.	Г	\vdash

nel H		Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow F	Progress	General Remarks				
ı, Hemel	Date	Time	Borehole	J	g Borehole Water Diameter Water		From	То	Duration (hh:mm)					
Road,			Depth	Depth	(mm)	Depth			(1111.111111)	1 Desition absolved with	Cround Donotrating			
nment Ltd, 18 Frogmore R	26/08/20		30.50	3.15		30.48	38.10	38.40	02:00	Position checked with Ground Penetrating radar, CAT and Genny prior to excavation. No visual or olfactory evidence of contaminatior noted. 50mm diameter standpipe installed to 5.00m depth on completion. Response zone 1.00m to 5.00m depth.				
N N										All dimensions in metres	Scale: 1:50			
iK En	Method Used:		tion pit +			ndo 200		Drilled By: An	ndy Norris	Logged AMarcelo By:	Checked By: AGS			

Contract:			Client:		Borehole	e:			_
North London Busies	s Park - Phase	e 1	Opecprime Development Limited				E	3H	5
Contract Ref:	Start: 25.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 27.08.20		49.91	E:528158.0 N:193467.0		2	of	5	

	J <u>Z</u> I	<u> </u>	Liiu.	27.00.20	43.31 E.320130.0 N. 133407.0		01 5
Samples and In-situ Tests		tu Tests	Water Backfill & Instru-	Description of Strata	Depth (Thick	Material Graphic	
Depth	No	Туре	Results	W Back		ness)	Legend
9.00-9.45	17	U	51 blows 100% recovery		Brown occasionally blue slightly gravelly firm becoming stiff consistency CLAY. Gravel consists of subrounded fine to coarse flint. (LONDON CLAY FORMATION) (stratum copied from 2.80m from previous sheet)	-	
10.50-11.00	18	D				- - - -	
- 11.00-11.45 - 11.00-11.45	6 19	SPT D	N=25		Grey stiff consistency CLAY.	11.30	
11.50-12.50	20	В			(LONDON CLAY FORMATION) Containing occasional claystone bands.	- - - - - - -	
12.50-12.95	21	U	61 blows 100% recovery			- - - - - - - -	
- 13.50-14.00 - - -	22	D				- - - -	
- 14.00-14.45 - 14.00-14.45 -	7 23	SPT D	N=28			- - - - - -	
15.00-15.50	24	D				- - -	
15.50-15.95	25	U	69 blows 100% recovery			- - - - - - - -	
16.50-17.00	26	D				- - - -	
- 17.00-17.45 - 17.00-17.45	8 27	SPT D	N=32			- - - - - - -	

		Boring Pro	ogress and	Water Ol	servations		Chisel	ling / Slow	Progress	General Remarks			
. г	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Nemarks		
	Julo	11110	Depth	Depth	(mm)	Depth	1 10111		(hh:mm)	4. On completion, boreho	ale hackfilled with		
											n, gravel filter to 5.00m		
										All dimensions in metres	Scale: 1:50		
	Method Inspection pit + Plant Jsed: Cable percussion Used: Dando 200				00	Drilled By: A	ndy Norri	Logged AMarcelo By:	Checked By: AGS				

Contract:			Client:	Borehole:					
North London Busies	s Park - Phase	e 1	Opecprim			E	3H5	;	
Contract Ref:	Start: 25.08.20	Ground	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 27.08.20		49.91	E:528158.0 N:193467.0		3	of	5	

<u> </u>	<u> </u>	321	End:	27.0	08.20		49.91		L.320	158.0 N:193467.0	3	of :
Sam	ples a	nd In-si	tu Tests	ter	≡ & tion						Depth	Mate
Depth	No	Туре	Results	Water	Backfill & Instru-mentation				Description of	of Strata	(Thick ness)	Gra Leg
18.00-18.50	28	D			W -	Grey st	tiff consiste	ency CLA	λΥ.		-	
						(LOND	ON CLAY	FORMA	(TION)	vious sheet)	Ē	
18.50-18.95	29	U	87 blows			(Stratur	п соргеа п	0111 11.3	om nom pre	vious srieet)		
			100% recovery								-	
- -											-	
-											-	
- - 19.50 - 20.00	30	D									-	
- 19.50 - 20.00 -	30	D									-	
											-	
20.00-20.45	9 31	SPT D	N=28								-	=
-											Ē	
-											(18.90)	
- -											<u>`</u> '	
21.00-21.50	32	D									-	
											-	=
21.50-21.95	33	U	78 blows								ŧ	-
• •			100% recovery								Ē	=
- -											Ė	-
- -											ļ	
- - 22.50 - 23.00	34	D									Ė	
- ∠∠.JU - ∠J.UU - -	04	D									-	
											-	
23.00-23.45	10 35	SPT D	N=40								-	
-											Ē	
- -											-	
-											-	
24.00-24.50	36	D									-	
-											-	
24.50-24.95	37	U	86 blows								-	
-			100% recovery								Ē	
<u>-</u> -											-	
- -											-	
- - 25.50-26.00	38	D									-	=
- 20.00-20.00	50	D										
-		ODT	N. 44								-	
26.00-26.45 26.00-26.45	39	SPT D	N=41								-	
- -											-	
• •											-	
-											-	
	udi- · F)			.ti.a	T	OL: "	/ C'	. Dwa			
		Progress	s and Water Ob hole Casing	Bore	ehole	Water			Progress Duration	General Re	marks	
Date	Time	Dep	_		neter	Depth	From	То	(hh:mm)			
										All dimensions in metres Sca	le: 1:5 0)
		- 1										

Boring Progress and Water Observations							ing / Slow	Progress	Conoral	Domorko	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General Remarks		
					·						
									All diseases is sectors	01 4.50	
Mathad		4: :4	. Dlan	<u> </u>			Duillad		All dimensions in metres	1.00	
Method Used:		tion pit - ercussio			ando 200		Drilled By: A	ndy Norri	Logged AMarcelo	Checked By:	AGS

Contract:				Client:		Borehole	e:		
North London Busies	s Paı	k - Phase	1	Opecprim	e Development Limited			E	3H5
Contract Ref:	Start:	25.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	27.08.20		49.91	E:528158.0 N:193467.0		4	of	5

13	3 2 I	J <u>Z</u> I	Ena:	27.0	18.20		45.51		L.020	156.0 14. 1			4	or s
Samp	oles a	nd In-si	tu Tests	ter	ii & tion								Depth	Mate
Depth	No	Туре	Results	Water	Backfill & Instru-mentation				Description of	of Strata			(Thick ness)	Grap Lege
27.00-27.50	40	D			ш Е	Grev et	iff consist	encv CI	AY					
21.00-21.00	10	В				(LOND	ON CLAY	FORM.	ATION)			-		
						(stratur	n copied f	rom 11.	30m fróm pre	vious sheet)				
27.50-27.95	41	U	105 blows 100% recovery									-		
			100 % recovery									-		
													-	
20 50 20 00	40	D												
28.50-29.00	42	D										Ī		
29.00-29.45	12	SPT	N=43											
29.00-29.45	43	D												
												-	-	
		_											30.20	
30.20-30.50	44	В				Grey to	green sai ETH GRO	ndy stiff	consistency (CLAY. Sand	is fine to coars	se.	· ·	<u> </u>
30.50-30.95	45	U	94 blows			(LAIVID	LIIIGNU) - 				ļ		[- -
			100% recovery									ļ	• •	<u> </u>
31.00-32.00	46	В				1						F	-	<u> </u>
J 1.00-32.00	40	Ь										ļ		
														<u> </u>
						1						-		<u> </u>
												<u> </u>		<u> </u>
32.00-32.45	13	SPT	N=50	1									-	
32.00-32.45	47	D				1						ļ		Ė
33 50 33 00	40	D										ļ	• •	
32.50-33.00	48	D		1								ļ		ļ <u>.</u>
												F		
33.00-33.40	49	U	140 blows											<u>:</u>
			90% recovery											
														<u>:</u>
04.00.04.50		-										-	-/7 00\	<u>.</u> -
34.00-34.50	50	D										-	(7.90)	<u> </u>
												Ī	•	<u> </u>
34.50-34.95	14	SPT	N=50									F		<u> </u>
34.50-34.95	51	D										-		<u> </u>
												-	-	
		_												-
35.50-36.00	52	D										-		<u> </u>
														<u> </u>
Во	ring F		and Water Ob			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Chiselli	ng / Slo	w Progress		General	Rema	rks	
Date -	Time	Bore		Bore	neter	Water	From	То	Duration (hh:mm)					
		Dep	pth Depth	(mı	111)	Depth			, ,					
										AH P				
								1		All dimensi	ons in metres	Scale:	1:50)
Method Ir		ection	pit + Plant					Drilled		1	AMarcelo	Checke		P

		Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow F	Progress	Capara	I Domorl		
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	Genera	l Remarl	(5	
	Date	Tillic	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)			-	-
2													
										All dimensions in metre	s Scale:	1:50	
	Method	Inspec	tion pit -	Plan				Drilled	•	Logged AMarcel	Checked		
<i>!</i>	Used:		ercussio		d: Da	ando 200	0	By: A r	ndy Norri	i s By:	Ву:		AGS

Contract:			Client:		Borehole) :		
North London Busies	s Park - Phas	se 1	Opecprim	e Development Limited			E	3H5
Contract Ref:	Start: 25.08.2) Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 27.08.2)	49.91	E:528158.0 N:193467.0		5	of	5

1	921	321	End:	27.0	08.20		49.91		E:5281	58.0 N:193467.0	5	of (
Sam	ples a	and In-si	tu Tests	ter	≅ ÷ ≣						Dep	oth Mate
Depth	No	Туре	Results	Water	Backfill & Instru-			[Description of	of Strata	(Thi	
36.00-36.45	15	SPT	N=50			Grey to	green sai	ndy stiff o	consistency (CLAY. Sand is fine to coars		- :-
36.00-36.45	53	D				(LAME	BETH GRO)UP)	?0m from pre		E	
						(Siraiu	iii copiea i	10111 30.2	om nom pre	vious sileelj	-	
											Ė	
37.00-37.50	54	D									-	
											-	
37.50-37.79	16	SPT	14,11/21,24,5									
37.50-37.95	55	D	for 10mm								ŧ	
38.00-38.40	56	D								LOU TOTOME	-38.	10 🚉
						Recov (LAME	ered as wh BETH GRO	iite and g)UP)	rey weathere	d SILTSTONE.	38.4	10 × × × ×
38.40-38.47	17	SPT(c)	25/100 for 20mm						e terminated	at 38.40m depth.		
											-	
-											-	
											ŧ	
											-	
											-	
											F	
											-	
											E	
											-	
											-	
											Ė	
											-	
											-	
											Ė	
											-	
											-	
											-	
											-	
											E	
-											-	
											-	
											E	
											ŧ	
Во	oring	Progress Bore	and Water O	Bore	hole	Water	Chiselli	Ī	V Progress Duration	General	Remarks	6
Date	Time	Dep	_	Dian	neter m)	Depth	From	То	(hh:mm)			
											1	
							1	1	1	i	i contract of the contract of	
Method		ection	pit + Plai	ļ			1.	Drilled		All dimensions in metres Logged AMarcelo	Scale: 1:	:50 A

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Conoral	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (bbumm)	General	Remarks
Date	11110	Depth	Depth	(mm)	Depth	1 10111		(hh:mm)		
									All dimensions in metres	Scale: 1:50
	1									1.00
Method	Inspec	tion pit -	⊦ ∣Plan			I	Drilled		Logged AMarcelo	Checked
Used:		ercussio		d: D a	ando 200	0	By: A	ndy Norri	s By:	Checked By: AGS

Contract:			Client:		Borehole	e:		
North London Busies	s Park - Phase	1	Opecprim	e Development Limited			E	3H6
Contract Ref:	Start: 21.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 25.08.20		51.43	E:528131.0 N:193518.8		1	of	4

L	1	3 21	321	End:	<u> 25.08.</u>	20	51.43	E:528131.0 N:193518.8		1 (of 4
		les a		tu Tests	Water	Instru- mentation		Description of Strata		Depth (Thick	Material Graphic
	Depth	No	Type	Results	Sac >	m n	·			ness)	Legend
ŀ	0.10-0.40	1	В				Brown TOPSOIL.			0.20	
	0.10 0.40-0.80	1 2	ES B				MADE GROUND: Brown is fine to coarse. Gravel	sandy gravelly firm consistency CLAY. S consists of subangular fine to coarse flint	I	(0.00)	$\times\!\!\times\!\!\times\!\!\times$
	0.50	2	ES				occasional brick.	, and the second	[(0.80)	
Ė	0.80-1.20	3	В						-	1.00	
Ė	1.20-1.65	1	SPT(c)	N=13		ilii	Brown slightly gravelly fi consists of subrounded fir	rm becoming stiff consistency CLAY. Gr ne to coarse flint.	ravel -		====
Ė	1.50-2.00	4	D	11 10			(LONDON CLAY FORMA Gravel content decrea	ATION)	-		
Ē	1.50-2.00	4	D				Graver content decire	uur acpur.	Ē		====
Ė	2.00-2.45	2	SPT	N=15		Ħ			-		
	2.00-2.45	5	D	IN-15	.:	:H∷			E		
-	2.50.2.00	6	D			∄∷			ļ		
Ē	2.50-3.00	0	D			:B∷			E		
Ė		_		07.11		∄÷			-	:	
Ė	3.00-3.45	7	U	67 blows 100% recovery					Ė		===
E			_						-		
+	3.50-4.00	8	D			∄∷			F		
E	-				.:				-		
	4.00-4.45 4.00-4.45	3 9	SPT D	N=35					ļ		
E									E		
Ė	4.50-5.00	10	D						-		====
E									E		
F	5.00-5.45	11	U	55 blows 100% recovery					-		
Ė				1007010001019					Ė	(0.20)	
ŀ									<u></u>	(9.20)	
F									F		
F	6.00-6.50	12	D						E		
F									ŀ		====
	6.50-6.95	4 13	SPT D	N=31					Ē		
ŀ	6.50-6.95	13	D						-		
Ė	-								Ė	•	
F									ŀ		
Ė	7.50-8.00	14	D						-		
F									-		
F	8.00-8.45	15	U	71 blows					-		===
E				100% recovery					Ē		
F	8.50-9.00	16	D						-		====
F									F		

	Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow F	Progress	Conoral	Domorko
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)		Remarks
		·	·			30.80 31.20	31.10 31.20	01:50 01:00	noted. 3. No groundwater encou 4. 50mm diameter standp depth on completion. F	/ prior to excavation. evidence of contamination intered.
Method Used:		tion pit + ercussic			ando 200	0	Drilled By: A n	ıdy Norri	Logged AMarcelo By:	Checked By: AGS

Contract:			Client:		Borehole	э:		
North London Busies	s Park - Phase	9 1	Opecprim	ne Development Limited			E	3H6
Contract Ref:	Start: 21.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 25.08.20		51.43	E:528131.0 N:193518.8		2	of	4

	1	921	321	End:	25.0	8.20	51.43	E:528131.0 N:193518.8		2	of 4
	-			tu Tests	Water	Backfill & Instru-mentation	De	scription of Strata		Depth (Thick	Material Graphic
	Depth	No	Type	Results	>	Bad In		•		ness)	Legend
	9.00-9.45 - - 9.50-9.95	17 5	D SPT	N=30				ION)	Gravel		
	- - 10.20-11.00 - - -	18	В				Grey stiff consistency CLAY (LONDON CLAY FORMATI	ON)		10.20	
	- 11.00-11.45 	19	U	65 blows 100% recovery						-	
	- - 12.00-12.50	20	D							- - - -	
	12.50-12.95 12.50-12.95	6 21	SPT D	N=18						- - - - - -	
	13.50-14.00	22	D							- - -	
	- 14.00-14.45 	23	U	72 blows 100% recovery						-	
	- - 15.00-15.50 - - -	24	D							- - -	
	- 15.50-15.95 - 15.50-15.95 	7 25	SPT D	N=24						- - - - - -	
	16.50-17.00	26	D							- - - -	
,	- 17.00-17.45 - - - - - - -	27	U	89 blows 100% recovery						-	

<u> </u>		Boring Pro	ogress and	Water Ob	servations		Chisel	lling / Slow	Progress	Caparal D) om orko
<u> </u>	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (bb.mm)	General R	Remarks
S	Date	1	Depth	Depth	(mm)	Depth			(hh:mm)	E 00m donth	
IIIIeiii Lta, ioi ioginoisis										5.00m depth.5. On completion, borehole bentonite seal to 1.00m, and arisings to 31.24m.	gravel filter to 5.00m
2										All dimensions in metres S	Scale: 1:50
5	Method Used:		tion pit - ercussio			ando 200	00	Drilled By:	andy Norri	7 111141 5515	Checked By: AGS

Contract:			Client:		Borehol	e:			
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			E	3H6	ô
Contract Ref:	Start: 21.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 25.08.20		51.43	E:528131.0 N:193518.8		3	of	4	
									_

	1921		End:	20.0	0.20		51.43			131.0 N:193518.8	<u> </u>	3	of
Sar	nples	and In-si	itu Tests	Water	Backfill & Instru- mentation				D i - 4i	- 5 Observa		Depth	Ma Gra
Depth	No	Туре	Results	ີ	3ack Inst				Description of	ot Strata		(Thick ness)	Le
18.00-18.50) 28	D		1		Grey st	iff consist	ency CL	AY.			-	
						(LOND	ON CLAY	FORM.	ATION)			-	
10 50 10 0	_ _	SPT	NI-00			(stratur	n copied i	rom 10.	20m fróm pre	vious sheet)		-	_
18.50-18.95 18.50-18.95		D	N=26									-	_
												-	_
-												-	
-												-	
- - 19.50 - 20.00	30	D										E	-
-												_	_
-												- (19.80)	
20.00-20.4	5 31	U	90 blows 100% recovery	.								[(19.00)	
- -			100 % recovery									-	
-												-	=
-												-	
- - - 04 00 04 54												-	
21.00-21.50	32	D										-	_
-												F	
21.50-21.9		SPT	N=32									F	
21.50-21.9	5 33	D										E	
- - -												E	_
-												E	E
-												-	
22.50-23.00	34	D										ŀ	
- -												<u> </u>	<u> </u>
- - 23.00-23.4	5 35	U	80 blows									-	
			100% recovery									<u> </u>	
-												-	
- -												-	_
- -												<u> </u>	ĿĒ
- - 24.00-24.50	36	D										-	F
- -												-	E
- - 24.50 - 24.95	5 10	SPT	N=33									F	
24.50-24.9 24.50-24.9		D	IN-33									F	E
-												-	
-												-	
-												E	
- - 25.50-26.00	0 40	D										_	
	10											<u> </u>	
- -												<u> </u>	
26.00-26.4	5 41	U	74 blows	,								<u> </u>	
-			100% recovery									<u> </u>	-
-												<u> </u>	E
- -												<u> </u>	
-												Ĺ .	F
E	Boring	Progress	s and Water Ob	servat	tions		Chisell	ing / Slo	w Progress	_			
Date	Time	Bore	ehole Casing	Borel Diam	hole v	Water	From	То	Duration	Genera	ai Rema	arks	
Date	11110	De	pth Depth	(mr	n) l	Depth	. 10111	10	(hh:mm)				
										All dimensions in metro		1:50	
Method			pit + Plan	.+				Drilled		Logged AMarcel	Checket	~d	

	Boring Pro	ogress and	Water Ob	servations		Chiselli	ing / Slow	Progress	Conoral	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remarks
Date	Tillie	Depth	Depth	(mm)	Depth	1 10111	10	(hh:mm)		
									All dimensions in metres	Scale: 1:50
Method	mopostion pit				Plant				Logged AMarcelo	Checked
Used:		ercussio		Used: Dando 2000			Ву: А	ndy Norri	is By:	By: AGS

Contract:			Client:		Borehole	e:		
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			E	3H6
Contract Ref:	Start: 21.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 25.08.20		51.43	E:528131.0 N:193518.8		4	of	4

1	1921	321	End:	25.0	08.20		51.43		E:5281	31.0 N:193518.8		4	of
Sam	nples a	and In-si	tu Tests	ē	i ⊢ ≡							epth	Mat
Depth	No	Туре	Results	Water	Backfill & Instru-mentation			[Description of	of Strata		Thick ness)	Gra Leg
27.00-27.50		D	- results		<u> </u>	Grev s	tiff consist	encv CL/	AY.		-	1033)	
						(LONE	ON CLAY	′ FÓRMA	ATION)		-		
27.50-27.95	11	SPT	N=37			(stratu	m copied i	rom 10.2	20m fróm pre	vious sheet)	F		_
27.50-27.95	43	D	14-57								[
											-		
											-		
											Ē		
28.50-29.00	44	D									ŀ		
											-		==
29.00-29.45	45	U	89 blows								E		=
											-		
											-		
											ŧ.		
30.00-30.50	46	В	100% recovery			Grev a	nd green s	sandv stif	f consistency	CLAY. Sand is fine to coa	arse -	0.00	
		_				(LAME	SETH GRO	DUP)				0.70)	
30.50-30.89	12	SPT	6 9/9 10 16 7								ļ.`		
			6,8/8,19,16,7 for 10mm			Recov	ered as wh	nite and o	irev weathere	d SILTSTONE.		0.70	<u> </u>
30.50-30.88		D B				(LAME	BETH GRO	DUP)	, Sy WCGUIGIC	S SIL I O I OINE.	- (1	0.54)	×××
31.10-31.15		SPT	25/50							10101 : "	3	1.24	ê ê
31.10-31.14	49	D	for 20mm			Cable	percussior	n borehole	e terminated	at 31.24m depth.	E		
31.20-31.24		SPT(c)	25/100 for 20mm								-		
			101 20111111								-		
											E		
											-		
											F		
											E		
-											-		
											-		
											[
											ţ		
-											F		
											[
											-		
											-		
											E		
											-		
											-		
											E		
											-		
		D==			4:		Ole: III	in = / C'					
		Bore	s and Water Ob hole Casing	Bore	hole	Water		T	v Progress Duration	General	Remar	ks	
Date	Time	De	_	Diam (m	neter	Depth	From	То	(hh:mm)				
											Γ		
										All dimensions in metres	Scale:	1:50	
Method I		ection	pit + Plan					Drilled		Logged AMarcelo	Checked		A

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Conoral	Remarks	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Remains	
		Берит	Берит	(mm)	Берит			+			
									All dimensions in metres	Scale: 1:50)
Method							Drilled		Logged AMarcelo	Checked	AGS
Used:	Cable p	ercussio	on ∣ ^{Use}	u: Da	ndo 200	000 By: Andy Norri			S Dy:	By:	AGS

Contract:				Client:		Borehole	e:		
North London Busies	s Par	k - Phase	1	Opecprim	e Development Limited			E	3H7
Contract Ref:	Start:	02.09.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	04.09.20		57.43	E:528024.6 N:193533.4		1	of	5

I	<u> </u>	3 Z I	Ena:	04.0	9.20	57.43	E:320024.0 IN: 193333.4	<u> </u>	or 3
Sam	oles a	ınd In-sit	tu Tests	Water	Backfill & Instru-mentation	Do	escription of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	Š	Back Ins ment	De	escription of Strata	ness)	Legend
-						MADE GROUND: ASPHAL	Т.	0.10	
0.00.4.00	١,	-				MADE GROUND: CONCRE	ETE.	0.30	
- 0.30-1.20	1	В					rey sandy GRAVEL. Sand is fine to coarse. ar fine to coarse concrete and brick.	(1.00)	
-	١.	007()						1.30	
- 1.20-1.65 - 1.30-2.00 - 1.50	1 2 1	SPT(c) B ES	N=11			consistency CLAY. Sand is f	and grey very sandy very gravelly firm fine to coarse. Gravel consists of subangular oncrete with occasional subrounded fine to	(1.00)	
2.00-2.45	2	SPT(c)	N=7					-	
2.00	2	ES			₿₽₽₽₽	Drawn slightly gravally firm	haraming stiff consistency CLAV Crayal	2.30	
2.40-3.00	3	В				consists of subrounded fine (LONDON CLAY FORMATI	ION)	-	
F					₿₿₽₽₽₽	Gravel content decreasir	ng with depth.	ļ.	
3.00-3.45	4	U	31 blows					-	
			100% recovery		₽:H::			Ė	
E					l::E::			E	
3.50-4.00	5	D			l::H::			-	
Ē					ŀ⊹H∴			ļ.	
								Ė	
4.00-4.45	3	SPT	N=22		:::目:::			-	
4.00-4.45	6	D			ŀ∷H∴			F	
	_	_						-	
- 4.50-5.00	7	D			1:::日::::			Ė	
E					l::B::			E	
F 00 F 4F	8	U	EO blavia					-	
- 5.00-5.45	*	U	52 blows 100% recovery					-	
			100 % recovery		\bowtie			<u> </u>	
-								-	
F								F	<u> </u>
								-	
- - 6.00 - 6.50	9	D			\bowtie			-	<u> </u>
F 3.00 3.00								F	
F					\bowtie			F	
6.50-6.95	4	SPT	N=25					ļ.	
6.50-6.95	10	D						t	
-					\bowtie			}	
F								F	<u> </u>
<u> </u>					\bowtie			-	<u> </u>
Ł								t	<u> </u>
7.50-8.00	11	D			\bowtie			(10.90)	
F					\bowtie			F(10.90)	<u> </u>
L					\bowtie			L	<u> </u>
8.00-8.45	12	U	49 blows					E	
-			100% recovery					F	<u> </u>
ļ								ļ	
ţ					\bowtie			ţ	
F					\bowtie			F	[

	Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow F	Progress	Canaral	Domorko
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)		Remarks
23/09/20		24.60	3.15			23.90 27.80	24.30 28.10	01:20 01:10	noted. 3. No groundwater encou 4. 50mm diameter standp depth on completion. F	r prior to excavation. evidence of contamination untered.
Method Used:		tion pit + ercussic			ando 200	0	Drilled By: A n	dy Norri	Logged AMarcelo By:	Checked By: AGS

Contract:				Client:		Borehole	:		
North London Busies	s Par	k - Phase	1	Opecprim	e Development Limited			Е	3H7
Contract Ref:	Start:	02.09.20	Ground	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	04.09.20		57.43	E:528024.6 N:193533.4		2	of	5

	192	1321	Ena:	04.09.			57.43		L.3200)24.6 N:193533.4	2	of
		1	itu Tests	Water	Instru- mentation				Description (of Strata	Depth (Thick	M G
Depth	No	Туре	Results	> 2	a a						ness)	
9.00-9.50	13	D				Brown	slightly g	ravelly fi	irm becoming	g stiff consistency CLAY. Gr	avel -	
						(LONE	ON CLAY	FORM/	ATION)		-	-
9.50-9.95	5	SPT	N=22		>>>>	(stratu	m copied t	rom 2.30	Om from prev	ious sheet)	-	
9.50-9.95	14	D			\ggg						-	
-					\ggg						-	<u> </u>
-					>>>>						-	\vdash
-											=	
- 10.50-11.0	0 15	D									-	-
-					>>>>						-	-
_ - 11.00-11.4	5 16	U	69 blows		\ggg						-	
- - -	٠ ا		100% recovery								_	
-					****						-	_
-					>>>						_	
-					\ggg						_	
_ - 12.00-12.5	0 17	D			\ggg						_	
	1				\ggg						-	1
-											-	\vdash
- 12.50-12.9 - 12.50 12.0	5 6	SPT	N=27								-	E
12.50-12.9 -	5 18	D									-	F
-											13.20	-
- - 13.20-14.0	0 19	В			\ggg	Grev s	tiff consist	ency CI	AY		13.20	E
- - -					\ggg	(LONE	ON CLAY	FORM/	ATION)		-	
-					>>>	` Co	ntaining o	ccasiona	al claystone b	ands.	-	-
-											-	
_ - 14.00-14.4	5 20	U	78 blows								-	
14.00 14.4 - -	0 20		100% recovery								_	
-					>>>>						_	
-											-	
-					>>>>						_	
_ - 15.00 - 15.5	0 21	D			>>>>						-	
-											-	<u> </u>
- -	_ _				\ggg						-	-
- 15.50-15.9 - 15.50-15.9		SPT D	N=29		>>>						-	
-					>>>>						-	
-					>>>						-	-
- -					>>>>						-	
- - - 40 50 47 0	_	_			\ggg						-	
- 16.50 - 17.0 -	0 23	D			>>>						-	
-					>>>						-	
_ - 17.00 - 17.4	5 24	U	80 blows								-	
- -			100% recovery		>>>						-	
-					\ggg						Ė	-
-					\ggg						-	E
-					\ggg						-	E
		,		. 1X.)	X		1				<u>'</u>	
. !	3oring		s and Water Ob				Chiselli	ng / Slov	w Progress	General Re	amarke	
Date	Time	2	ehole Casing	Borehol Diamete	er 📗	Water Depth	From	То	Duration (hh:mm)	Ochiciai IX	Siliains	
		De	pth Depth	(mm)		Depth			(5.00m depth. 5. On completion, borehole bentonite seal to 1.00m, gand arisings to 40.40m.		
										All dimensions in metres So	cale: 1:5	0
		ection								Logged AMarcelo C		_

[]		Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow l	Progress	Canaral Damarka	
5	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General Remarks	
ווופווו בנט, יט ו וטפוווטי בייכש			Depth	Depth	(mm)	Depth			(5.00m depth.5. On completion, borehole backfilled with bentonite seal to 1.00m, gravel filter to 5.00m and arisings to 40.40m.	
5										All dimensions in metres Scale: 1:50	
	Method Used:		tion pit - ercussio		1	ando 200	0	Drilled By: A ı	ndy Norri		GS

Contract:			Client:		Boreho	le:		
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			E	3H7
Contract Ref:	Start: 02.09.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 04.09.20		57.43	E:528024.6 N:193533.4		3	of	5
				•				

	J <u>L</u> 1	3 Z I	Liiu.	04.09.20	57.43	E:520024.6 N: 193533.4	<u> </u>	or 3
Samp	oles a	nd In-si	tu Tests	Water Backfill & Instrumentation		Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	W Bac	!	Description of Guata	ness)	Legend
- 18.00-18.50 - - - - 18.50-18.95	25 8	D SPT	N=31		Grey stiff consistency CL (LONDON CLAY FORMA (stratum copied from 13.2	ATION)	- - - -	
18.50-18.95	26	D	IN-31				- - - - - - - -	
19.50-20.00	27	D					-	
20.00-20.45	28	U	83 blows 100% recovery				- - - - - - -	
21.00-21.50	29	D						
21.50-21.95 21.50-21.95	9 30	SPT D	N=38				- - - - - - - -	
22.50-23.00	31	D						
23.00-23.45	32	U	88 blows 100% recovery				- - - - - - - -	
24.00-24.50	33	D					- - - -	
24.50-24.95	10 34	SPT D	N=40				- - - - - - - - -	
25.50-26.00	35	D						
- 26.00-26.45 	36	U	88 blows 100% recovery				(27.20)	

	Boring Pr	ogress and	Water Ob			Chisell	ing / Slow	Progress	Conoral	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General	Remarks
		Depth	Depth	(mm)	Depth			(1111.11111)		
									All dimensions in metres	Scale: 1:50
Method	Inspec	tion pit -	+ Plan				Drilled		Logged AMarcelo	Checked
Used:		ercussio		d: D a	ando 200	0	By: A	ndy Norri	s By:	Checked By: AGS

Contract:			Client:		Borehole	e:			
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			E	3H7	7
Contract Ref:	Start: 02.09.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 04.09.20		57.43	E:528024.6 N:193533.4		4	of	5	
									_

	9 2 I	<u> </u>	Elia.	04.09.20	57.43	E:520024.6 N: 193533.4	4	or 3
			tu Tests	Water Backfill & Instru-		Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	M Back		Description of Strata	ness)	Legend
- 27.00-27.50	37	D			Grey stiff consistency CL	AY.	-	
_					(LONDON CLAY FORM)	ATION) 20m from previous sheet)	-	
27.50-27.72	11	SPT	18,7/29,21		(Stratam copica from 15.2	2011 II OIII previous sincery	-	
27.50-27.95	38	D	for 50mm				-	
- 21.30-21.93	30	D					F	
E							E	
		_					-	
28.50-29.00	39	D					-	
-							-	
29.00-29.45	40	U	100 blows				F	
E			90% recovery				E	
_							-	
_							-	
20.00.00.50	44	_					-	
30.00-30.50	41	D					-	
-							E	
30.50-30.95	12 42	SPT D	N=42				-	
30.50-30.95	42	D					-	<u></u>
F							-	
-							F	
31.50-32.00	43	D					F	
51.30-32.00	40	D					E	
_							Ł	
- 32.00-32.45	44	U	96 blows 100% recovery				-	
-			1007010000019				ļ	
-							F	
E							E	
33.00-33.50	45	D					-	
							-	
22.50.22.05	12	SPT	N=46				Ė	
33.50-33.95 33.50-33.95	13 46	D	N=46				F	
E							E	
[-	
-							-	
34.50-35.00	47	D					-	
-							-	
- - 35.00-35.45	48	U	123 blows				F	
55.00-55.45	=0	J	90% recovery				Ė	
-							-	
-							-	
-							ļ.	
			•		N-8			

	Boring Pr	ogress and	Water Ob			Chisell	ing / Slow	Progress	Conoral	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General	Remarks
		Depth	Depth	(mm)	Depth			(1111.11111)		
									All dimensions in metres	Scale: 1:50
Method	Inspec	tion pit -	+ Plan				Drilled		Logged AMarcelo	Checked
Used:		ercussio		d: D a	ando 200	0	By: A	ndy Norri	s By:	Checked By: AGS

Contract:				Client:			Borehole	:		
North London Busies	s Parl	k - Phase	1	Opecprim	e Development Lim	ited			E	3H7
Contract Ref:	Start:	02.09.20	Groun	d Level (m AOD):	National Grid Co-ordinate:		Sheet:			
1921321	End:	04.09.20		57.43	E:528024.6 N:193	533.4		5	of	5

1	J Z I	3 Z I	Ena:	04.03	9.20	57.43	E:520024.6 N: 193533.4	<u> </u>	or J
	_		tu Tests	Water	Backfill & Instru- mentation		Description of Strata	Depth (Thick	Material Graphic
Depth	No	Type	Results	>	Bac Ins	!	Description of Citata	ness)	Legend
36.00-36.50	49	D				Grey stiff consistency CL (LONDON CLAY FORMA (stratum copied from 13.2	ATION)	-	
36.50-36.93	14	SPT	5,8/12,14,15,9 for 55mm					[
36.50-36.95	50	D	IOI SSIIIII					- - -	
- - -								-	
- - 37.50-38.00 - -	51	D						- - -	
- - 38.00-38.45 -	52	U	141 blows 90% recovery					- - - -	
- - -								- - -	
- - -								-	
- - -								- -	
39.50-40.00	53	D						- - -	
- - - 40.00-40.40	15	SPT	6,10/14,15,15,6					-	
40.00-40.40	54	D.	for 20mm					40.40	
- - -						Cable percussion borehol	e terminated at 40.40m depth.	-	
- - -								- - -	
- - -								- - -	
- - -								<u>-</u>	
- - -								- - -	
- - -								-	
- - -								-	
- - -								-	
- - -								-	
- - -								-	
- - -								- - -	
- - -								-	
- - -								-	
- -								‡	

	Boring Pr	ogress and	Water Ob			Chisell	ing / Slow	Progress	Conoral	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General	Remarks
		Depth	Depth	(mm)	Depth			(1111.11111)		
									All dimensions in metres	Scale: 1:50
Method	Inspec	tion pit -	+ Plan				Drilled		Logged AMarcelo	Checked
Used:		ercussio		d: D a	ando 200	0	By: A	ndy Norri	s By:	Checked By: AGS

Contract:			Client:		Borehole	e:		
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			E	3H8
Contract Ref:	Start: 27.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 01.09.20		60.80	E:528047.6 N:193625.2		1	of	5

	<u> </u>	321	Liiu.	01.09	.20		60.80		L.0200)47.6 N:193625.2			of
Sam	ples a	and In-si	tu Tests	Water	Backfill & Instru- mentation							Depth	
Depth	No	Туре	Results	e	Backfill & Instru- mentation			De	escription	of Strata		(Thick ness)	G
					Ì	MADE	GROUND): ASPHAL	_T.		Γ	0.07	X
0.25	1	ES				MADE	GROUNE	- SUB E	ASE: Gre	y to brown SAND and GR	AVEL.	0.40	\otimes
0.30-0.90	1	В								ists of subangular fine to	coarse	(0.50)	X
0.65	2	ES								alt fragments. LE: Brown to red SANI) and	F ' '	\otimes
-0.90-1.20	2	D				MADE GRAV	EL. Sand i	s fine to co	arse. Grav	rel consists of frequent suba	ים and Ingular∫	0.90	\bigotimes
1.10	3	ES			::B:::	fine to	cobble bric	k and suba	angular fine	e to coarse concrete.	J .	1.20	\boxtimes
1.20-1.65	1	SPT(c)	N=23		:H::	MADE	GROUNE	D: Brown s	andy grav	elly firm consistency CLAY	Sand	-	_
							to coarse. onal brick f		nsists of s	subangular fine to coarse fli	nt and	ļ.	Ŀ
1.70-2.00	3	D							hecomina	g stiff consistency CLAY.	Gravel	-	_
-0.00.0.45		ODT()	N. O.		∷∄∷	consis	ts of fine to	coarse su	brounded t	filnt.	O. a. vo.	_	_
2.00-2.45 2.00-2.45	2 4	SPT(c) D	N=24		₿₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		ON CLAY avel conte			nth		-	<u> </u> -
2.00-3.00	5	В				Gi	avei conte	iii uecieas	ing with de	ραι.		-	_
					::H:::							E	_
												-	_
3.00-3.45	6	U	32 blows		::H:::							-	Ŀ
			100% recovery									-	E
3.50-4.00	7				:H::							-	Ŀ
J.5U-4.UU	'	D			÷∄∷							-	F
_												E	F
4.00-4.45	3	SPT	N=21									_	<u> </u>
4.00-4.45	8	D										-	_
4.50-5.00	9	D										-	<u> </u>
					⊹∄∷							-	_
	10		40 5 5 5 5 5		·#.:							-	Ŀ
5.00-5.45	10	U	42 blows 100% recovery		****							-	_
			1									Ē	-
												-	<u> </u>
					****							-	E
6.00-6.50	11	D										-	-
												-	=
6.50-6.95	4	SPT	N=24		****							(44.00)	F
6.50-6.95	12	D	11 24									(11.00)	-
=:												-	<u> </u>
•					****							-	-
												-	Ŀ
7.50-8.00	13	D										-	_
•												-	-
8.00-8.45	14	U	63 blows									_	F
	' '		100% recovery									-	Ε
												-	<u> </u>
					****							-	-
- -												-	E
Bo	oring I		s and Water Ob				Chiselli	ng / Slow F		General F	Rema	arks	
Date	Time	Bore De		Boreho Diame (mm	ter	Water Depth	From	То	Duration (hh:mm)	1. Position checked with (ina
							13.60	13.80	00:50	radar, CAT and Genny	prior to	excavati	ion.
							16.20 16.70	16.50 17.00	01:10 01:15	No visual or olfactory e noted.	vidence	of conta	amir
							24.80	25.00	00:50	3. No groundwater encou	ntered.		
										4. 50mm diameter standpi depth on completion. R	ipe insta		
										All dimensions in metres	Scale:	1:50)
			pit + Plan				· .	Drilled		Logged AMarcelo	Checke		

	Boring Progress and Water Observations						ling / Slow F	Progress	General	Domarka
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General	Remarks
			2 5 6 41	()		13.60 16.20 16.70 24.80	13.80 16.50 17.00 25.00	00:50 01:10 01:15 00:50	noted. 3. No groundwater encou 4. 50mm diameter standp	prior to excavation. evidence of contamination intered.
Method Used:		tion pit - ercussio			ndo 200	0	Drilled By: An	ıdy Norri	Logged AMarcelo By:	Checked By: AGS

Contract:				Client:		Borehole	e :		
North London Busies	s Parl	k - Phase	1	Opecprim	ne Development Limited			E	3H8
Contract Ref:	Start:	27.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	01.09.20		60.80	E:528047.6 N:193625.2		2	of	5

		1321	End:		9.20		00.00			047.6 N. 193625.2		or ;
Sa	mples	and In-	situ Tests	Water	Backfill & Instrumentation						Depth	Mat
Depth	No	Туре	Results	⊗	Back Inst				Description	or Strata	(Thick ness)	Gra Leg
9.00-9.50	15	7.			<u> </u>	Brown				ng stiff consistency CLAY. Gravel		
_						consis		o coarse	subrounded			
9.50-9.95	5	SPT	N=24			(stratu	m copied	from 1.2	ATION) 0m from pre	vious sheet)		<u> </u>
9.50-9.95	16					•	,		•	,	-	
-											-	
-												
- 10 50 11 6											-	
- 10.50-11.0 -	0 17	' D									-	
_											_	
11.00-11.4	5 18	U	85 blows 100% recovery								-	
-			1007010001019								-	
_												
-											-	
-											12.20	
12.20-12.5	50 19	В				Grey s	tiff consist	ency CL	AY.			E
12.50-12.9	5 6		N=17			(LONL	ON CLAY	r FORM casional	ATION) claystone ba	ands.	-	
12.50-12.9	5 20								,		Ė	-
_											_	
-											-	E
13.50-14.0	0 21	D										
- 10.50-14.0	.0 2										_	
14.00.44	_	, , , , , ,	70 ble								-	
14.00-14.4	5 22	! U	72 blows 100% recovery								-	
-											-	
-											-	<u> </u>
_											_	
- 15.00-15.5	60 23	D									-	
											_	
- 15.50-15.9 15.50-15.9			N=22								-	
- 10.00-10.0	.5 2-										-	
-											-	-
-											-	
16.50-17.0	0 25	D									-	
-	_										-	
17.10-17.5	5 26	U	106 blows 100% recovery								-	-
_												
-											-	
											-	
	Rorino	Drogra	ss and Water Ob	ean/o	tions		Chical	ina / Sla	w Progress			
		Bor	ehole Casing	Bore	hole	Water		T	Duration	General Rema	arks	
Date	Tim	P	epth Depth	Diam (mı	neter	Depth	From	То	(hh:mm)	1		
				·						 5.00m depth. 5. On completion, borehole backf bentonite seal to 1.00m, gravel and arisings to 40.44m. 		
										All dimensions in metres Scale:	1:50	<u> </u>

[[Boring Pro	ogress and	Water Ob	servations		Chisel	ling / Slow F	Progress	Canaral I	Domarka		
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General I	Remarks		
3	2 4.10		Depth	Depth	(mm)	Depth			(1111.111111)	E 00m donth			
ווופווי דיק' וכן יכשוויי י										 5.00m depth. 5. On completion, borehole backfilled with bentonite seal to 1.00m, gravel filter to 5.00m and arisings to 40.44m. 			
										All dimensions in metres	Scale: 1:50		
	Method Used:		tion pit - ercussic		1	ando 200	0	Drilled By: Ar	ndy Norri	Logged AMarcelo By:	Checked By: AGS		

Contract:				Client:		Borehole	e:		
North London Busies	s Parl	k - Phase	1	Opecprim	e Development Limited			E	3H8
Contract Ref:	Start:	27.08.20	Ground	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	01.09.20		60.80	E:528047.6 N:193625.2		3	of	5

	132	1321	Liiu.	01.09			60.80			J47.6 N:193625.2		3	of
Sar	mples	and In-s	itu Tests	Water	Backfill & Instru- mentation				Doggringfier	of Strata		Depth	Ma Gr
Depth	No	Туре	Results] % [Back Inst				Description	oi Strata		(Thick ness)	Le
18.00-18.5						Grev st	ff consist	encv CI	AY				
						(LOND	ON CLAY	FORM /	ATION)		-		_
	_ _					(stratun	n copied t	from 12.	20m fróm pre	vious sheet)	ļ		<u> </u>
- 18.50-18.9 - 18.50-18.9		SPT D	N=32								-		
. 10.50-10.5	7 20										-		
-												-	
- -											-		
- - - 10 50 00 0	, ,,	D									-		
- 19.50 - 20.0	0 29	ט ט			******						-		
-											-		
20.00-20.4	5 30	U	90 blows								F		_
-			100% recovery								F		
-											F		=
-					⋘						E		<u> </u>
-											F	_	
21.00-21.5	0 31	D									E		\vdash
-											E		<u> </u>
- - 21.50-21.9	5 9	SPT	N=33								E		
21.50-21.9		D	55								E		=
- -											-	_	
-											ŀ		<u> </u>
-													=
- - 22.50-23.0	0 33	D									-		
											ŀ		<u> </u>
- 											ŀ	-	=
23.00-23.4	5 34	U	75 blows 100% recovery								ļ		
- -			100 % recovery										\vdash
- -											-		
-					₩						ļ		
- - - 04.00.04.5	, ,,										ļ	-	
- 24.00-24.5 -	0 35	D									ļ		
-					⋘						F		<u> </u>
- 24.50-24.9	5 10	SPT	5,7/17,14,10,9								F		
- - 24.50-24.9	5 36	D	for 70mm								F		
											E	-	\vdash
-					⋘						E		<u> </u>
-											E		
25.50-26.0	0 37	D									E		\vdash
-											ŀ		
_ - 26.00-26.4	5 38	U	86 blows								-	-	<u> </u>
-			100% recovery								þ	(28.24)	
-											ļ		
-											ļ		=
-											ļ		
E	3oring		s and Water Ob	servation Boreho		Vater	Chiselli	ing / Slo	w Progress	General	Rema	rks	
Date	Tim	<u> </u>	ehole Casing pth Depth	Diame (mm	ter '	Depth	From	То	Duration (hh:mm)				
				(<u> </u>								
										All dimensions in metres	Scale:	1:50	<u> </u>
Method	Insr	ection	pit + Plan	ıt				⊥ Drilled		Logged AMarcelo	Checke		
			ussion Use							Fullation	,		1 1

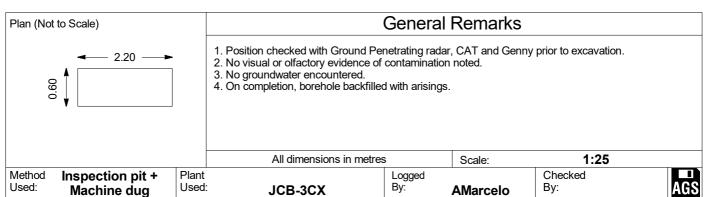
	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Conoral	Remarks	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Remains	
		Берит	Берит	(mm)	Берит			+			
									All dimensions in metres	Scale: 1:50)
Method		tion pit -					Drilled		Logged AMarcelo	Checked	AGS
Used:	Cable p	ercussio	on Use	u: Da	ndo 200	0	By: A	ndy Norri	S Dy:	By:	AGS

Contract:				Client:			Borehole	:		
North London Busies	s Park	- Phase	1	Opecprim	e Developm	ent Limited			E	3H8
Contract Ref:	Start: 2	7.08.20	Groun	d Level (m AOD):	National Grid Co	-ordinate:	Sheet:			
1921321	End: 0	1.09.20		60.80	E:528047.	6 N:193625.2		4	of	5

	1	921	321	End:	01.09.20	_	60.80	E:528047.6 N:193625.2	4	of 5	
	-			tu Tests	Water Backfill & Instru-	ration	Г	Description of Strata	Depth (Thick	Material Graphic	
	Depth	No	Туре	Results	Bac ≤	mer	_	ossipion of strata	ness)	Legend	
	27.00-27.50	39	D				Grey stiff consistency CLA (LONDON CLAY FORMA (stratum copied from 12.2	TION)	-		
	- 27.50-27.95 - 27.50-27.95 	11 40	SPT D	N=38			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- - - - -		
	28.50-29.00	41	D						- - - -		
	 - 29.00-29.45 - - - -	42	U	107 blows 100% recovery					-		
	- - - 30.00-30.50	43	D						- - - - -		
-	- 30.50-30.95 - 30.50-30.95 	12 44	SPT D	N=42					- - - - - -		
	31.50-32.00	45	D						- - - - - -		
	32.00-32.45	46	U	111 blows 100% recovery							
	- - 33.00-33.50	47	D						- - - -		
	33.50-33.95 33.50-33.95	13 48	SPT D	N=44					- - - - - - -		
	- - 34.50-35.00 - -	49	D						- - - -		
	- 35.00-35.45 	50	U	98 blows 100% recovery					 - - - - - -		
	-				⊥ 💥	XX			_		J

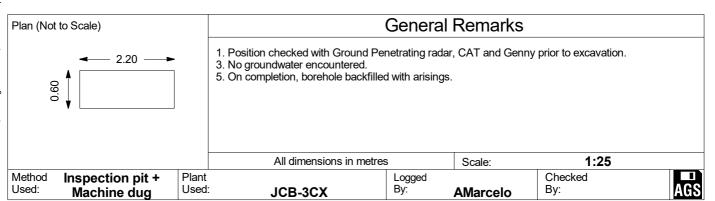
	Boring Pro	ogress and	Water Ob			Chisel	ing / Slow	Progress	General	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General	INCITIAINS
		Depth	Depth	(mm)	Depth			()		
									A II - I:	
						<u> </u>			All dimensions in metres	Scale: 1:50
Method	Inspec	tion pit +	⊦ Plan	t			Drilled		Logged AMarcelo	Checked
Used:	Cabie p	ercussic	on Used	d: Da	ndo 200	0	By: 🛕	ndy Norri	s By:	By: AGS

Contract:				Client:		Borehole	e :		
North London Busies	s Par	k - Phase	1	Opecprim	ne Development Limited			E	3H8
Contract Ref:	Start:	27.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	01.09.20		60.80	E:528047.6 N:193625.2		5	of	5

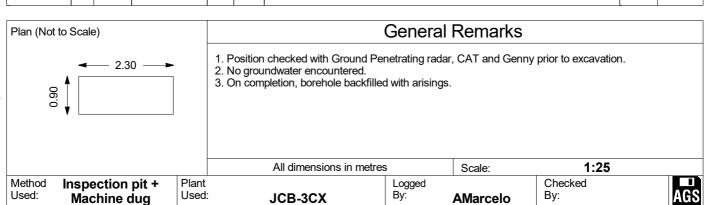

	<u> </u>	3 Z I	Ena:	U1.U	9.20	60.60	E:320047.6 N: 193023.2	<u> </u>	or 3
Samp	_	nd In-si	tu Tests	Water	Backfill & Instru- mentation		Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	>	Bacl Ins men		Description of Strata	ness)	Legend
36.00-36.50 - 36.50-36.95 - 36.50-36.95	51 14 52	D SPT D	N=47			Grey stiff consistency CL (LONDON CLAY FORM) (stratum copied from 12.2	ATION)		
37.50-38.00	53 54	D U	104 blows 100% recovery					-	
39.00-40.00	55	В						- - - - - - - - - -	
40.00-40.45	15 56	SPT D	8,8/10,11,14,15 for 70mm			Cable percussion borehol	e terminated at 40.44m depth.	40.44	
-								- - - - - - - -	
-								- - - - - - - -	
-								- - - - - - - - - - - - - - - - - - -	
- - - - - - - -								- - - - - - - - - -	
F								<u> </u>	

	Boring Pr	ogress and	Water Ob			Chisell	ing / Slow	Progress	Conoral	Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General	Remarks
		Depth	Depth	(mm)	Depth			(1111.11111)		
									All dimensions in metres	Scale: 1:50
Method	Inspec	tion pit -	+ Plan				Drilled		Logged AMarcelo	Checked
Used:		ercussio		d: D a	ando 200	0	By: A	ndy Norri	s By:	Checked By: AGS

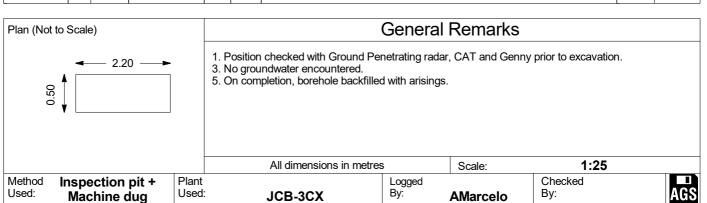
Contract:		Clie	ent:		Trial Pit:			
North London Busies	s Park - Phase	1	Opecprim	e Development Limited			٦	ГР1
Contract Ref:	Start: 24.08.20	Ground Le	evel (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 24.08.20	4	19.50	E:528264.6 N:193526.6		1	of	1


	<u> </u>	<u>JZ 1</u>	Eliu.	24.0	0.20	+3.30 L.32020+.0 14. 133320.0		OI I
	oles a	and In-si	tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	Š	ĕ B		ness)	Legend
0.10	1	ES				Brown soft gravelly sandy soft consistency CLAY containing roots and rootlets. Sand is fine to medium. Gravel consists of subangular fine to coarse flint. \((TOPSOIL)\)	0.25	
0.50	2	ES				MADE GROUND: Brown sandy slightly gravelly firm consistency CLAY. Sand is fine to coarse. Gravel consists of fine to coarse subrounded brick, flint, concrete and glass.	(0.45)	
1.00	1	В				Brown slightly sandy slightly gravelly stiff consistency CLAY. Sand is fine to medium. Gravel consists of fine to coarse rounded flint. (LONDON CLAY FORMATION)	0.70	
- - - - 1.75	3	ES				Between 1.50m and 2.50m high organic matter content noted. Between 1.50m and 2.50m organic odour noted.	(2.30)	
2.20	2	В					-	
- - -							3.00	
_						Trial pit terminated at 3.00m depth.	-	
- - - - - -							- - - - - -	
							_	

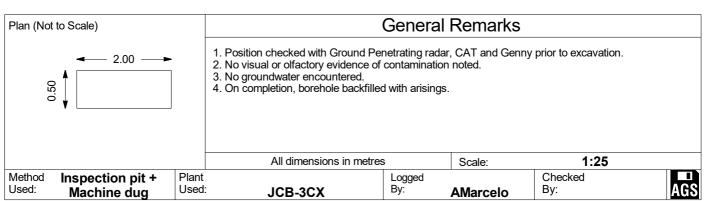
Contract:			Client:		Trial Pit:				
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			٦	TP2	2
Contract Ref:	Start: 24.08.20	Ground	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 24.08.20		49.40	E:528278.5 N:193459.3		1	of	1	


-	<u></u>	<u></u>				10110		•
Sam	ples a	and In-si	tu Tests	<u>-</u>	l ≡		Depth	Material
Depth	No		Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
0.10	1	ES				Brown soft gravelly sandy soft consistency CLAY containing roots and rootlets. Sand is fine to medium. Gravel consists of subangular fine to coarse flint. \((TOPSOIL)\)	0.25	
0.70	2	ES				MADE GROUND: Brown sandy gravelly firm consistency CLAY. Sand is fine to coarse. Gravel consists of fine to coarse subangular flint, brick and concrete. Contains occasional roots and rootlets. Clinker and metal.	(0.85)	
- - - - -						Brown slightly gravelly stiff consistency CLAY. Gravel consists of occasional fine to coarse rounded flint. (LONDON CLAY FORMATION)	1.10	
2.00 	1	В					(1.90)	
_						Trial pit terminated at 3.00m depth.	3.00	
- - - - - - - -							-	

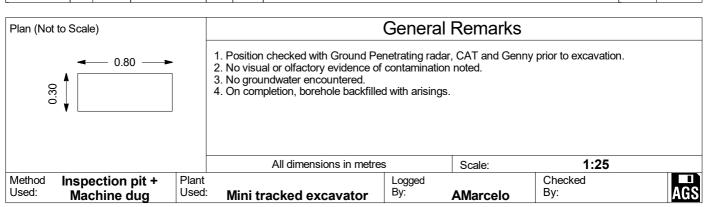
Contract:			Client:		Trial Pit:				
North London Busies	s Park - Phas	e 1	Opecprim	e Development Limited			٦	TP3	3
Contract Ref:	Start: 24.08.20	Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 24.08.2 0)	50.09	E:528282.7 N:193405.1		1	of	_1	


		 -	Liid.	•	J		-	
	1		tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Materia Graphic
Depth	No	Туре	Results	>	Ä	'	ness)	Legeno
0.10	1	ES				MADE GROUND: Brown sandy gravelly soft consistency CLAY containing frequent roots and rootlets. Sand is fine to coarse. Gravel consists of fine to coarse subangular to subrounded flint with occasional brick and concrete. (TOPSOIL)	0.25	
0.50	2	ES				MADE GROUND: Brown sandy very gravelly firm consistency CLAY. Sand is fine to medium. Gravel consists of subangular to subrounded flint and frequent brick and concrete fragments, occasional clinker and metal.	(0.80)	
0.75	3	ES					- 1 05	
					*****	Trial wit to main stad at 1 OF as doubt	1.05	
-						Trial pit terminated at 1.05m depth.		
							-	
							-	
							<u> </u>	
							<u> </u>	
							<u> </u>	
							<u> </u>	
							ļ .	
	1				1		F	

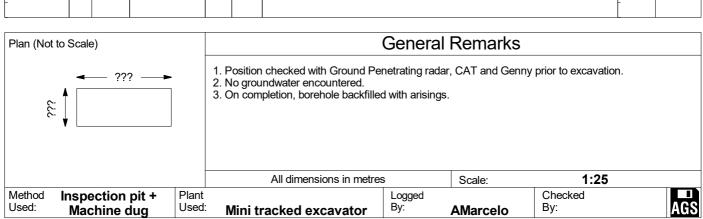
Contract:			Client:		Trial Pit:			
North London Busies	s Park - Phase	e 1	Opecprim	ne Development Limited			٦	ГР4
Contract Ref:	Start: 24.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 24.08.20		52.62	E:528259.9 N:193386.9		1	of	1


Sam	ples a	and In-si	tu Tests	ter	Ē		Depth	Material
Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
0.10	1	ES				Brown sandy gravelly soft consistency CLAY containing frequent roots and rootlets. Sand is fine to coarse. Gravel consists of subrounded fine to coarse flint. (TOPSOIL)	0.20	
- 0.35	2	ES				MADE GROUND: Brown gravelly firm consistency CLAY. Gravel consists of fine to coarse subrounded flint, brick and concrete.	(0.35)	
0.80	3	ES				MADE GROUND: Black to dark brown slightly sandy gravelly firm consistency CLAY. Sand is fine to medium. Gravel consists of fine to coarse brick and occaisonal asphalt fragments At 0.80m asphalt odour noted.	(0.65)	
-						Brown firm consistency CLAY.	1.20	
-						(LONDON CLAY FORMATION)	1.35	
						Trial pit terminated at 1.35m depth.		

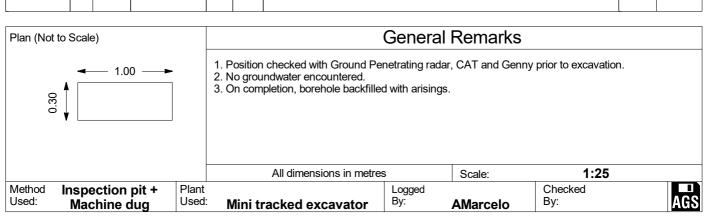
Contract:			Client:		Trial Pit:				
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			٦	ГР5	;
Contract Ref:	Start: 24.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 24.08.20		50.23	E:528212.2 N:193425.0		1	of	1	


•			End.	•	·			· ·
Sam	ples a	and In-si	tu Tests	er	■		Depth	Material
Depth	No		Results	Water	Backfill	Description of Strata	(Thick ness)	
- - 0.15 -	1	ES				Brown soft gravelly sandy soft consistency CLAY containing roots and rootlets. Sand is fine to medium. Gravel consists of subangular fine to coarse flint. (TOPSOIL)	(0.30)	
- - 0.60 -	2	ES				MADE GROUND: Brown sandy gravelly firm consistency CLAY. Sand is fine to coarse. Gravel consists of fine to coarse subangular flint and frequent brick, conrete, metal, glass and occasional plastic.	- - -	
- - - -							-(1.20)	
- - - - 1.75 -	3	ES				MADE GROUND: Brown sandy gravelly stiff consistency CLAY. Sand is fine to medium. Gravel consists of fine to coarse subangular brick.	(0.50)	
- - -						Brown and grey sandy stiff consistency CLAY. Sand is fine to medium. Slightly gravelly fine to coarse rounded flint. (LONDON CLAY FORMATION)	2.00	
2.50 	1	В					(1.00)	
-							3.00	
- -						Trial pit terminated at 3.00m depth.	-	
- - -							-	
- -							-	
- -							-	
- - -							-	
-							-	

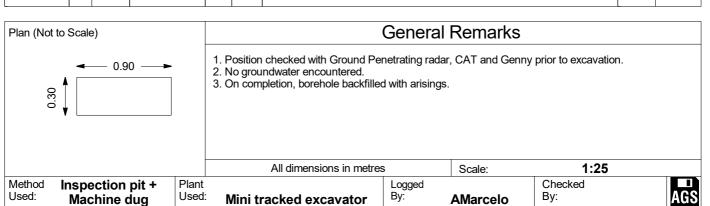
Contract:			Client:		Trial Pit:			
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			٦	ГР6
Contract Ref:	Start: 26.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 26.08.20		52.52	E:528167.3 N:193364.1		1	of	1


Samples	s and Ir	ı-situ Tests	e e	■		Depth	Material
Depth N	Іо Тур	e Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
0.10 1					Brown soft gravelly sandy soft consistency CLAY containing roots and rootlets. Sand is fine to medium. Gravel consists of subangular fine to coarse flint. (TOPSOIL) MADE GROUND: Brown sandy gravelly firm consistency CLAY. Sand is fine to coarse. Gravel consists of subangular to subrounded fine to coarse flint, and frequent fine to cobble subangular brick and concrete.	0.15 (0.45)	
1.00 1	1 B				Contains old wire and metals. Occasional roots and rootlets. Brown very sandy slightly gravelly firm becoming stiff consistency CLAY. Sand is fine to coarse. Gravel consists of occasional subrounded fine to coarse flint.	(0.90)	
					Trial pit terminated at 1.50m depth.	1.50	
						-	
-						_	
						-	
						-	
						-	
						-	
						-	
-						-	
						-	
						-	
						_	
						-	
						-	
-						F	
						-	
						-	

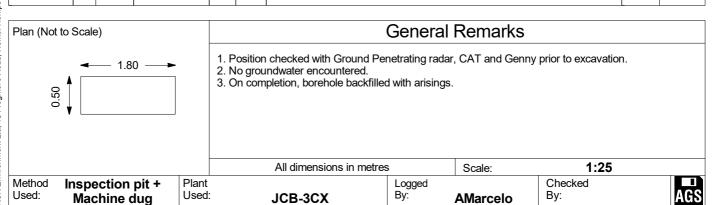
Contract:			Client:		Trial Pit:			
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			7	ГР7
Contract Ref:	Start: 26.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 26.08.20		50.02	E:528159.6 N:193429.1		1	of	1


<u> </u>						23.32 2.320.100.0 111.100.120.1		
Sam	ples a	and In-si	tu Tests	<u></u>	=		Depth	Material
Depth	No	1	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
0.10	1	ES				MADE GROUND: Brown sandy gravelly soft consistency CLAY containing frequent roots and rootlets. Sand is fine to coarse. Gravel consists of subangular to angular brick and concrete. (TOPSOIL)	0.20	
0.50	2	ES				MADE GROUND: Brown slightly clayey SAND and GRAVEL. Sand is fine to coarse. Gravel consists of frequent subangular fine to coarse brick and concrete with occasional asphalt.	(0.50)	
- - -						Brown sandy slightly gravelly firm becoming stiff consistency CLAY. Sand is fine to coarse. Gravel consists of subrounded fine to coarse flint. (LONDON CLAY FORMATION)	-	
1.00	1	В					(0.70)	
						Trial pit terminated at 1.40m depth.	1.40	
-						That picternimated at 1.40m depth.	-	
-							-	
-							-	
_							_	
-							-	
-							-	
=							-	
-							-	
-							-	
							-	
=							-	
-								
_								
=							-	
-							-	
							-	
-							}	
=							-	
-							-	
-							<u> </u>	
							<u> </u>	
•								
_								
							-	
							-	

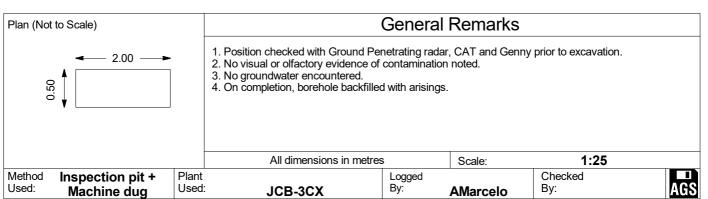
Contract:			Client:		Trial Pit:				
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			٦	TP8	8
Contract Ref:	Start: 26.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 26.08.20		49.91	E:528159.3 N:193452.0		1	of	1	


	-		Eria.		JJ	10101 210201001011110010210		
Sam	ples a	and In-si	tu Tests	<u></u>	l =		Depth	Material
Depth	No	1	Results	Water	Backfill	Description of Strata	(Thick ness)	
0.15	1	ES				MADE GROUND: Brown sandy gravelly soft consistency CLAY. Sand is fine to coarse. Gravel consists of subrounded to rounded fine to coarse flint and occasional subangular fine to coarse brick. \((TOPSOIL)\)	0.25	
0.50	2	ES				MADE GROUND: Brown and grey clayey SAND and GRAVEL. Sand is fine to coarse. Gravel consists of frequent subangular to angular fine to coarse brick and concrete with occasional asphalt.	(0.45)	
· ·						Brown slightly sandy frm becoming stiff consistency CLAY. Sand is fine to medium. (LONDON CLAY FORMATION)	-	
1.00	1	В					- (0.80) -	
							1.50	
						Trial pit terminated at 1.50m depth.	-	
							-	
-							-	
							-	
							_	
							-	
							_	
-							-	
							_	
							_	
							-	
							-	
-							F	
							-	
							_	
	1	1	i	1	1	I control of the second of the	İ	1

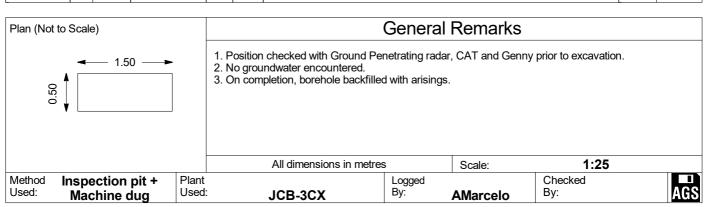
Contract:			Client:		Trial Pit:				
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			٦	TP9)
Contract Ref:	Start: 26.08.20	Ground	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 26.08.20		53.29	E:528080.0 N:193442.7		1	of	1	


			Liid.					
	_		tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	>	mă WWW	MADE GROUND: Brown sandy gravelly soft consistency CLAY	ness)	Legend
0.10	1	ES				containing frequent roots and rootlets. Sand is fine to coarse. Gravek consists of subangular to subrounded flint and occasional angular brick fragments.	0.20	
0.30	2	ES				(TOPSOIL) MADE GROUND - SUBSOIL: Brown sandy gravelly soft to firm	0.45	
1.00	1	В				consistency CLAY. Sand is fine to coarse. Gravel consists of subrounded to subangular fine to coarse flint and frequent angular to subangular brick and concrete and occasional asphalt. Brown occasional mottled orange sandy firm to stiff consistency CLAY containing occasional roots and rootlets. Sand is fine to coarse. Gravel consists of very occasional subrounded flint. (LONDON CLAY FORMATION) Trial pit terminated at 1.30m depth.	(0.85)	
-						, p	-	
_							_	
_							-	
_							-	
-							-	
_							_	
_							_	
-							-	
-							-	
-							-	
-							-	
_							-	
_								
<u> </u>	1						ŀ	

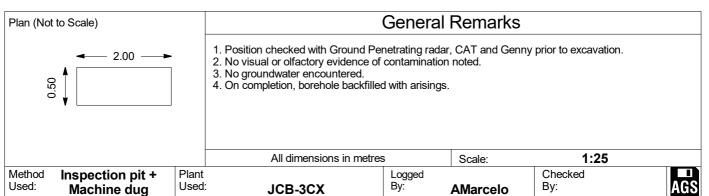
Contract:				Client:		Trial Pit:			
North London Busies	s Par	k - Phase	1	Opecprim	e Development Limited			TI	P10
Contract Ref:	Start:	25.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	25.08.20		54.22	E:528073.9 N:193496.3		1	of	1


Sam Depth	ples a	nd In-si	tu Tests Results	Water	Backfill	Description of Strata	Depth (Thick	Materia Graphic
0.10	1	ES	Results	>		MADE GROUND: Brown sandy gravelly soft consistency CLAY / TOPSOIL containin frequent roots and rootlets. Sand is fine to coarse. Gravel consists of subrounded to subangular fine to coarse flint, and subangular fine to coarse brick and concrete. (TOPSOIL) MADE GROUND: Brown sandy very gravelly firm becoming stiff consistency CLAY. Sand is fine to coarse. Gravel consists of subrounded to subangulaar flint and fine to cobble frequent brick and	0.20	Legend
0.75	2	ES				concrete, and metal, timber, asphalt and clinker Gravel content decreasing with depth Between 1.00m and 2.00m black particles noted.	- - - (1.80)	
1.50	3	ES					-	
						Trial pit terminated at 2.00m depth due to concrete obstruction.	2.00	
							-	
							-	
							-	
							-	
							-	

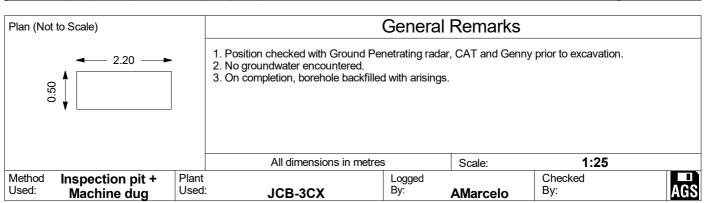
Contract:			Client:		Trial Pit:			
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			TI	P11
Contract Ref:	Start: 24.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 24.08.20		49.62	E:528185.9 N:193521.8		1	of	1


	<u> </u>	JZ 1	Eliu.	24.0	0.20	43.02 L.320103.3 N. 133321.0		01
Sam	oles a	and In-si	tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	Š	Ba	·	ness)	Legend
- - 0.15	1	ES				Brown soft gravelly sandy soft consistency CLAY containing roots and rootlets. Sand is fine to medium. Gravel consists of subangular fine to coarse flint. \((TOPSOIL)\) MADE GROUND: Brown sandy gravelly firm consistency CLAY. Sand	- - 0.25 -	
0.50	2	ES				is fine to coarse. Gravel consists of subangular to subrounded fine to coarse flint, brick, concrete, metal, plastic Plastic pipe trending N - S exposed on northen face at 0.50m Brick uncovered with 'DANGER ELECTRIC' engraving CAT scab showing electrical interfearence at base of pit.	(0.65)	
						Pit terminated due to CAT interfearence and proximity to pipe / BT	0.90	
-						\service. Trial pit terminated at 0.90m depth due to potential service, and subsequent CAT interfearence.	_	
-							-	
							-	
-							-	
-							-	
-							-	
-							-	
-							-	
-							-	
-							-	
-							-	
-							_	
-							-	
-							-	
							_	
-							-	
-							-	
-							-	
-							-	

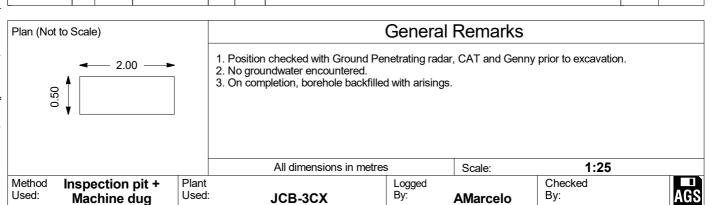
Contract:				Client:		Trial Pit:			
North London Busies	s Par	k - Phase	1	Opecprim	e Development Limited			TI	P12
Contract Ref:	Start:	25.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	25.08.20		54.36	E:528082.0 N:193513.2		1	of	1


<u> </u>	<u> </u>	<u> </u>	LIIG.	23.0	0.20	54.50 L.520002.0 14. 1555 15.2		01 1
Sam	oles a	nd In-si	tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	\$	Ba	Description of ottata	ness)	Legend
0.10	1	ES				MADE GROUND: Brown sandy gravelly soft consistency CLAY / TOPSOIL. Sand is fine to coarse. Gravel consists of subrounded fine to coarse flint and subangular fine to coarse brick and occasional concrete fragments. Contains frequent roots and rootlets.	- 0.15	
0.50	2	ES				MADE GROUND: Brown sandy very gravelly firm consistency CLAY. Sand is fine to coarse. Gravel consists of subrounded fine to coarse flint and subangular fine to coblle brick and conrete. Contains metal, clinker, glass and occasional asphalt fragments.	(1.35)	
1.00 -	3	ES					- - - -	
-							1.50	
						Trial pit terminated at 1.50m depth due to steel obstruction (potential drains service).		
							-	
- - - -							- - - -	

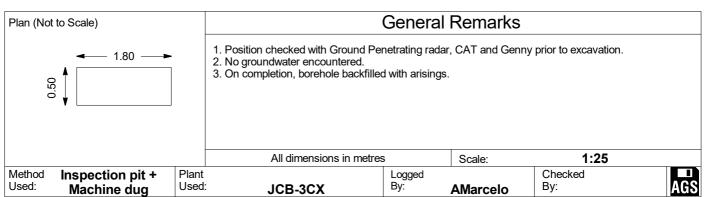
Contract:			Client:		Trial Pit:				-
North London Busies	ss Park - Phas	e 1	Opecprim	e Development Limited			TI	P13	į
Contract Ref:	Start: 24.08.20	Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 24.08.20		50.56	E:528177.9 N:193556.1		1	of	1	


	JZ 1	JZ 1	⊏IIU.	24.0	0.20	50.50 E.520177.5 N. 155550.1		OI I
Sam	ples a	nd In-si	tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	×	Ba		ness)	Legend
0.10	1	ES				Brown soft gravelly sandy soft consistency CLAY containing roots and rootlets. Sand is fine to medium. Gravel consists of subangular fine to coarse flint. (TOPSOIL)	0.20	
0.40	2	ES				Brown slightly gravelly firm to stiff consistency CLAY containing roots and rootlets. Gravel consists of subrounded flint.	(0.45)	
0.50	1	В				(LONDON CLAY FORMATION)	0.65	
1.00	2	В				Brown stiff consistency CLAY. (LONDON CLAY FORMATION)	-	
- - -							_ - - [(1.85)	
-							- - -	
2.00	3	В				From 2.00m becoming brown and grey.	2.50	
					×××××	Trial pit terminated at 2.50m depth.	2.00	
_							-	
-							-	
_							_	
-							_	
							-	
-							-	
							-	
-							-	
-							-	
-							-	
L							L	

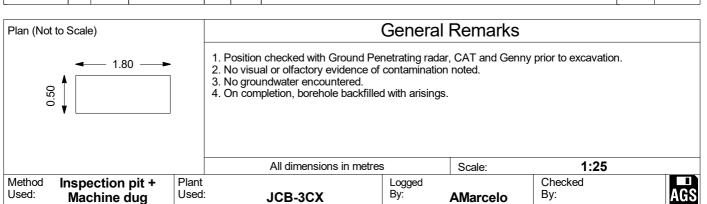
Contract:			Client:		Trial Pit:			
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			TI	P14
Contract Ref:	Start: 24.08.20	Ground	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 24.08.20		54.17	E:528107.3 N:193544.7		1	of	1


	<u> </u>	<u> </u>	Eliu.	24.0	0.20	54.17 L.526167.514.155544.7		OI I
Sami	oles a	nd In-si	tu Tests		=		Depth	Material
	_		1	Water	Backfill	Description of Strata	(Thick	Graphic
Depth	No	Type	Results	>	m		ness)	Legend
						Brown soft gravelly sandy soft consistency CLAY containing roots and		<u></u>
0.10	1	ES				rootlets. Sand is fine to medium. Gravel consists of subangular fine to	0.20	
-						ի coarse flint.	0.20	
-						(TOPSOIL)	-	$\times\!\!\times\!\!\times\!\!\times$
-						MADE GROUND: Brown slightly sandy gravely firm consistency CLAY.	-	
- 0.50		- 0				Sand is fine to coarse. Gravel consists of subrounded fine to coarse flint and subangular fine to coarse brick and concrete, clinker. Contains roots	(0.70)	$\times\!\!\times\!\!\times\!\!\times$
0.50	2	ES				and subangular fille to coarse blick and concrete, clinker. Contains roots and rootles.	(0.70)	
-						and rootios.	-	$\times\!\!\times\!\!\times\!\!\times$
							0.90	
						Brown stiff consistency CLAY.		
						(LONDON CLAY FORMATION)	_	
						Contains occasional pockets of orange fine to medium sand.		
<u> </u>							-	
†							-	
†							-	
1.50	1	В					-	
- 1.00	l '						-	
-							-	
-							-	
-							- (0 (0)	
							(2.10)	
							L	
2.50	2	В						
<u> </u>								
<u> </u>							-	
-							-	
-							3.00	
-					×××××	Trial pit terminated at 3.00m depth.	3.00	
-						Thai pit terminated at 0.00m depth.	-	
-							-	
-							-	
-							-	
-							-	
-							ļ	
							1	
							L	
							L	
							Γ	
							<u> </u>	
							ļ .	
†							<u> </u>	
F							}	

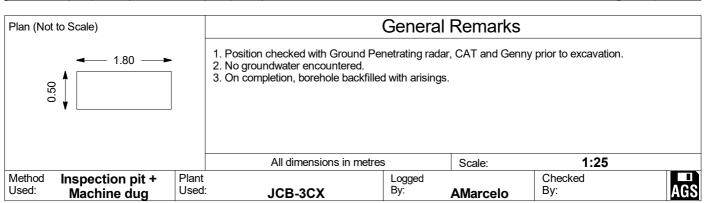
Contract:				Client:		Trial Pit:			
North London Busies	s Par	k - Phase	• 1	Opecprim	e Development Limited			TI	P15
Contract Ref:	Start:	25.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	25.08.20		59.23	E:528042.5 N:193544.4		1	of	1

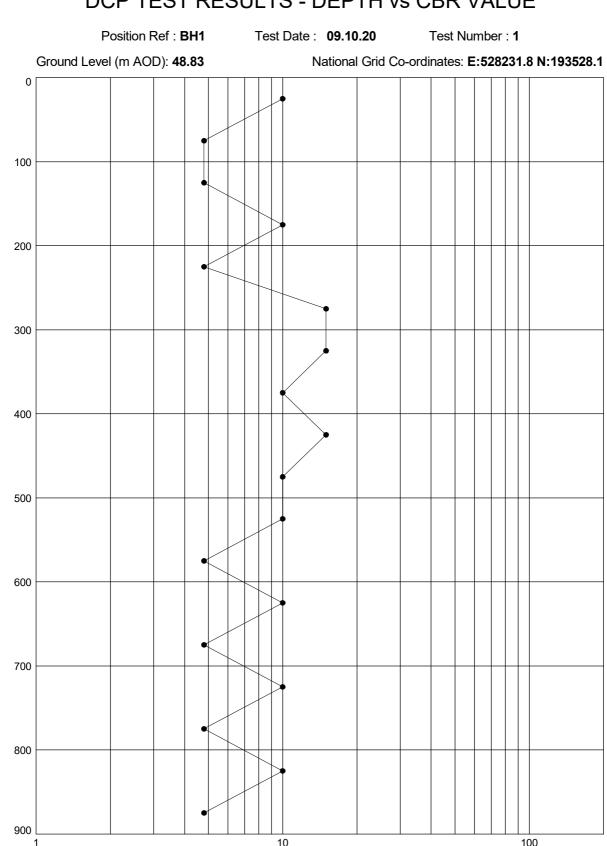

San	nples a	and In-sit	tu Tests	Water	Backfill	Depariation of Strate	Depth (Thick	Material Graphic
Depth	No	Туре	Results	We	Вас	Description of Strata	ness)	Legend
- - 0.15 - -	1	ES				MADE GROUND: Brown sandy gravelly soft consistency CLAY containing frequent rootlets. Sand is fine to coarse. Gravel consists of subrounded fine to coarse flint and subangular fine to coarse brick and occasional concrete. (TOPSOIL) MADE GROUND: Brown slightly sandy gravelly firm becoming stiff consistency CLAY. Sand is fine to coarse. Gravel consists of	- 0.25 - -	
- - - 0.80	2	ES				subrounded fine to coarse flint and frequent fine to cobble brick and concrete, and occasional metal, asphalt and glass fragments Gravel content decreasing with depth.	-	
- - - -							(1.75)	
- - - -						Trial pit terminated at 2.00m depth due to level concrete obstruction.	2.00	
- - -							-	
- - -							-	
· · ·							-	
- - - -							-	
- - -							-	

Contract:			Client:		Trial Pit:				_
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			TI	P16	ì
Contract Ref:	Start: 25.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
1921321	End: 25.08.20		59.19	E:528064.8 N:193548.2		1	of	1	


	<u>JZ 1</u>	JZ 1	⊏⊓u.	23.0	0.20	33.13 L.320004.0 14.133340.2		OI I
Sam	ples a	and In-si	tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	Š	Ba	·	ness)	Legend
0.10	1	ES				MADE GROUND: Brown sandy gravelly soft consistency CLAY. Sand is fine to coarse. Gravel consists of subangular fine to coarse brick and subrounded fine to coarse flint. Contains frequent roots and rootlets. \((TOPSOIL)\)	0.25	
0.50	2	ES				Brown sandy very gravelly firm consistency CLAY. Sand is fine to coarse. Gravel consists of subangular fine to coarse brick, concrete and subrounded flint. Contains timber, metal and clinker and asphalt Gravel content decreasing with depth.	- - - -	
1.00	3	ES				At 1.00m asphalt odour noted.		
2.00	4	ES						
						Trial pit terminated at 2.50m depth due to machine constraints on steep surface.	2.50	

Contract:				Client:		Trial Pit:			
North London Busies	s Par	k - Phase	1	Opecprim	e Development Limited			TI	P17
Contract Ref:	Start:	25.08.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End:	25.08.20		59.60	E:528024.1 N:193574.2		1	of	1


				_				
	1	and In-si		Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Type	Results	>	B		ness)	Legend
- 0.10 - -	1	ES				MADE GROUND: Brown sandy gravelly soft consistency CLAY / TOPSOIL containing frequent roots and rootlets. Sand is fine to coarse. Gravel consists of subrounded to subangular flint and subangular occasional brick and concrete fragments. (TOPSOIL)	0.20	
- 0.50 - - -	2	ES				MADE GROUND: Brown very sandy very gravelly firm to stiff consistency CLAY. Sand is fine to coarse. Gravel consists of subangular to subrounded fine to coarse flint and fine to cobble subangular frequent brick and concrete. Contains metal, glass, plastic.	- - - - - (1.80)	
- - - 1.50	3	ES					- - - -	
-							2.00	
- - - - -						Trial pit terminated at 2.00m depth due to concrete obstruction.	- - - - - -	
 - - - -							- - - - -	
- - - - -							- - - -	


Contract:			Client:		Trial Pit:			
North London Busies	s Park - Phase	e 1	Opecprim	e Development Limited			T	P18
Contract Ref:	Start: 25.08.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
1921321	End: 25.08.20		60.63	E:528056.0 N:193581.6		1	of	1

	<u> </u>	3 <u>Z I</u>	Ena:	25.00	5.20	00.03	E:320030.0 N: 19330 1.0	ı	or I
	_		tu Tests	Water	Backfill	Г	Description of Strata	Depth (Thick	Graphic
Depth 0.10	No 1	Type	Results	3	-8 <u>0</u>	MADE GROUND: Brown is fine to coarse. Gravel of	sandy gravelly soft consistency CLAY. Sandonsists of fine to coarse subrounded flint and brick and occasional concrete fragments.	ness)	Legend
- - - - 0.75 - -	2	ES				\(TOPSOIL) MADE GROUND: Brown Sand is fine to coarse. Gr	sandy very gravelly firm consistency CLAY avel consists of fine to coarse subrounded flin oble brick metal fragments, timber, asphalt and		
- 1.50 -	3	ES						(2.25)	
- - 2.00	4	ES						2.50	
-						Trial pit terminated at 2.50	m depth.		
- - -								-	
- - -								-	
- - -								-	
- - -								-	
- - -								-	
-								-	

Depth below ground level (mm)

DCP TEST RESULTS - DEPTH vs CBR VALUE

Notes: CBR values calculated after TRRL Road Note 8 method. Values over 100% are plotted on the 100% line.

CBR Value (%)

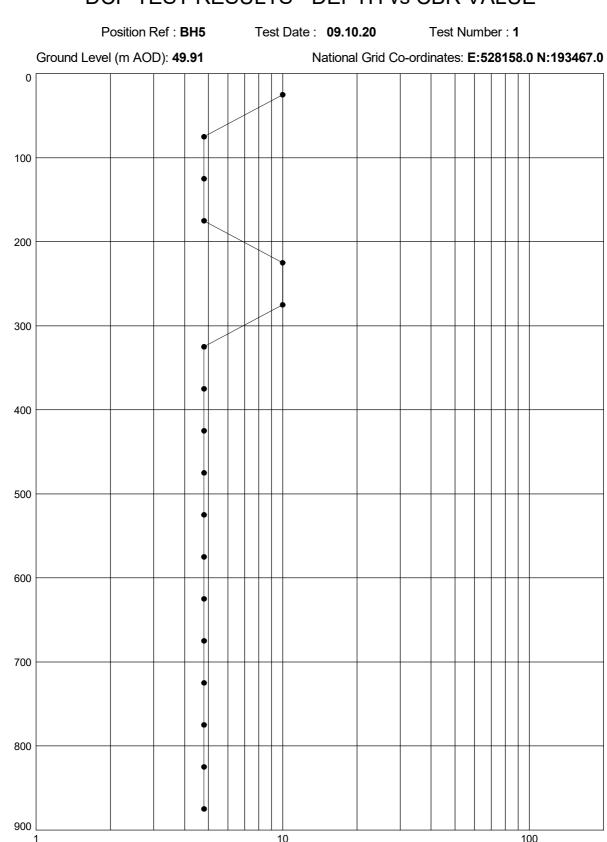
RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By
EPPL.

Date Checked By 08/01/21

Date

Contract


North London Busiess Park - Phase 1

Contract Ref:

1921321

Depth below ground level (mm)

DCP TEST RESULTS - DEPTH vs CBR VALUE

Notes: CBR values calculated after TRRL Road Note 8 method. Values over 100% are plotted on the 100% line.

CBR Value (%)

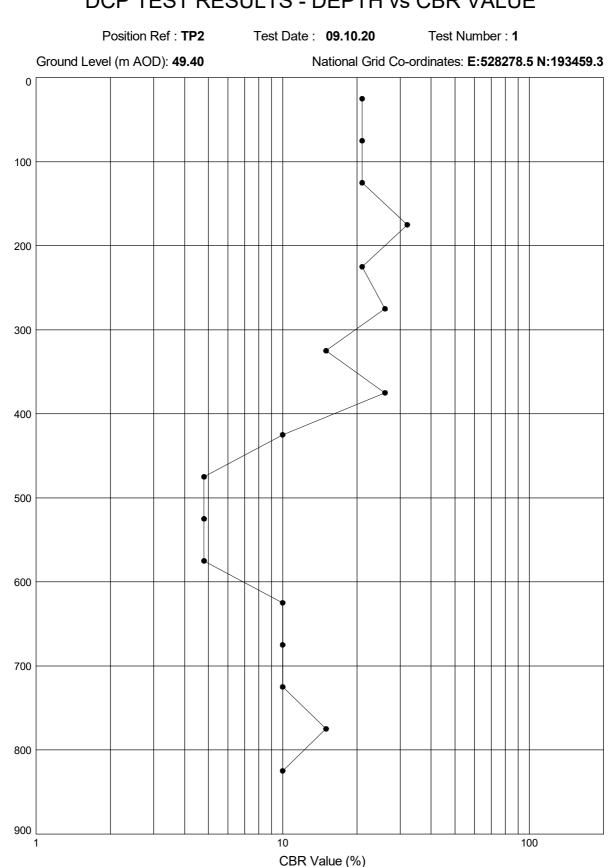
RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By
EP\$.

Date Checked By 08/01/21

Contract

North London Busiess Park - Phase 1


Contract Ref:

1921321

Date

Depth below ground level (mm)

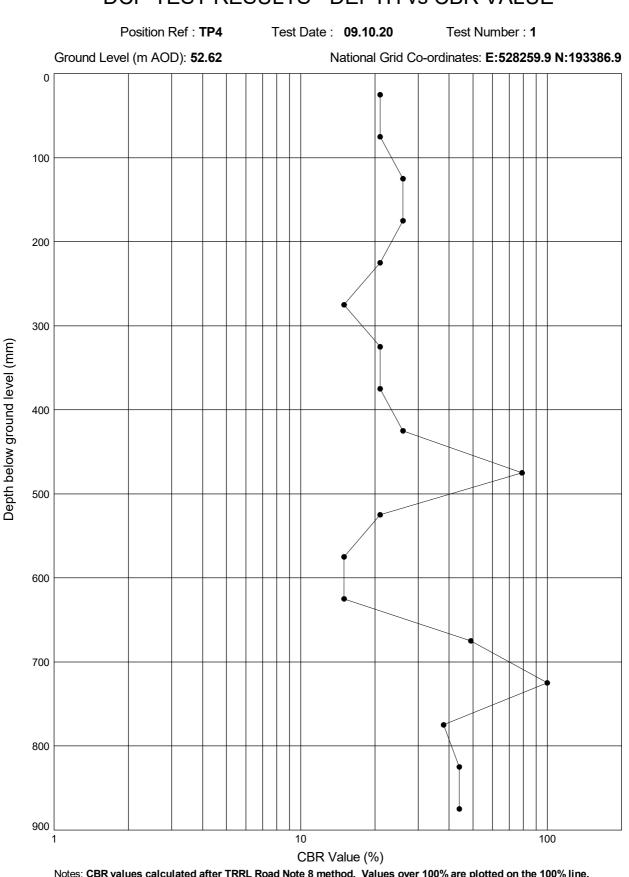
DCP TEST RESULTS - DEPTH vs CBR VALUE

Notes: CBR values calculated after TRRL Road Note 8 method. Values over 100% are plotted on the 100% line.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

ed By
6.

Date Checked By 08/01/21


Contract

North London Busiess Park - Phase 1

Contract Ref:

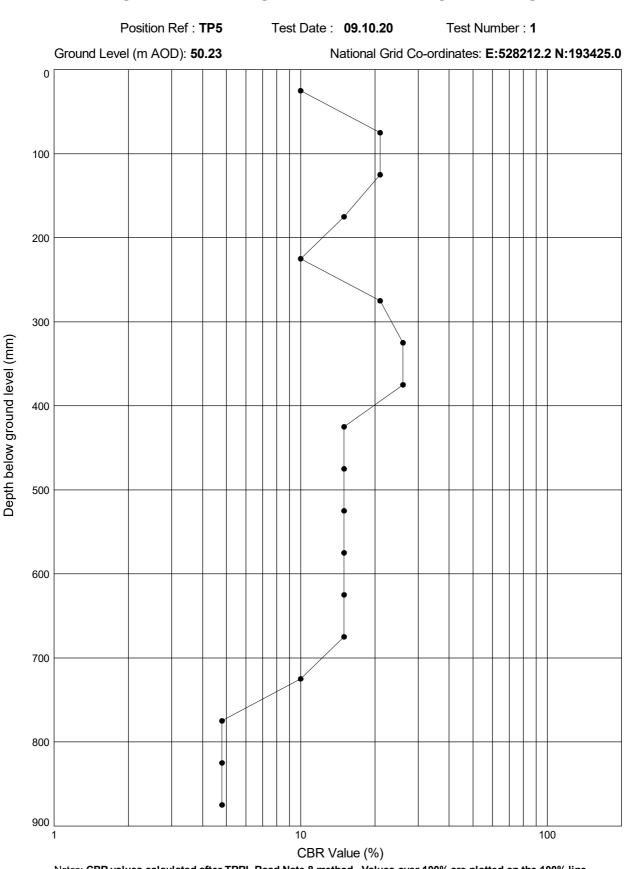
1921321

DCP TEST RESULTS - DEPTH vs CBR VALUE

Notes: CBR values calculated after TRRL Road Note 8 method. Values over 100% are plotted on the 100% line.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

	Compiled By
	EP\$4.
Contract	


Date Checked By 08/01/21

Contract Ref:

North London Busiess Park -Phase 1

1921321

DCP TEST RESULTS - DEPTH vs CBR VALUE

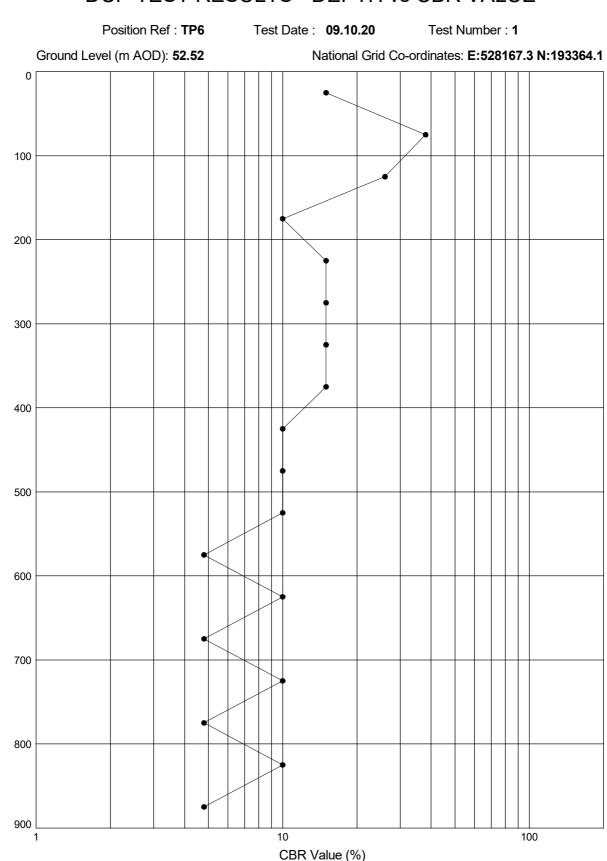
Notes: CBR values calculated after TRRL Road Note 8 method. Values over 100% are plotted on the 100% line.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By
. HER3

Date Checked By 08/01/21

Contract


North London Busiess Park - Phase 1

Contract Ref:

1921321

Depth below ground level (mm)

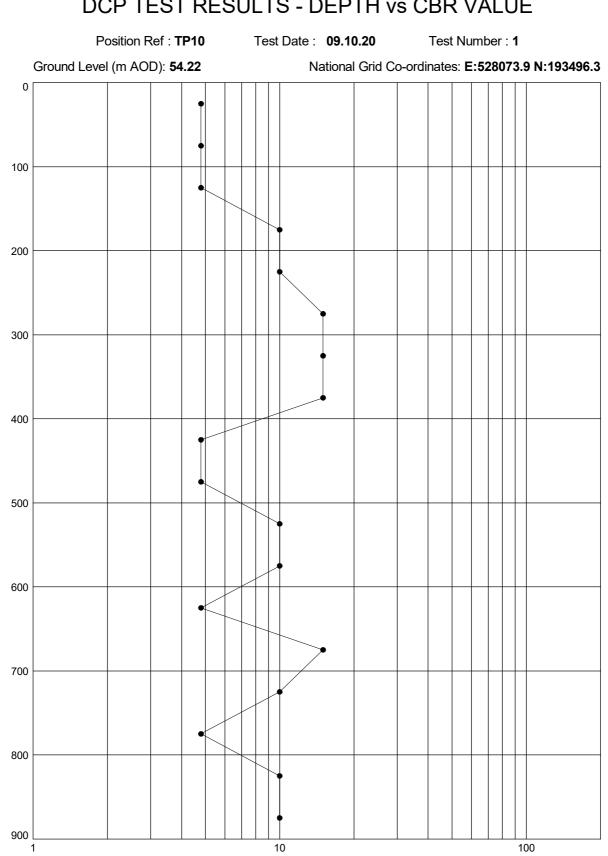
DCP TEST RESULTS - DEPTH vs CBR VALUE

Notes: CBR values calculated after TRRL Road Note 8 method. Values over 100% are plotted on the 100% line.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

	Compiled By
	A443
Contract	

Date Checked By 08/01/21


Contract Ref:

North London Busiess Park - Phase 1

1921321

Depth below ground level (mm)

DCP TEST RESULTS - DEPTH vs CBR VALUE

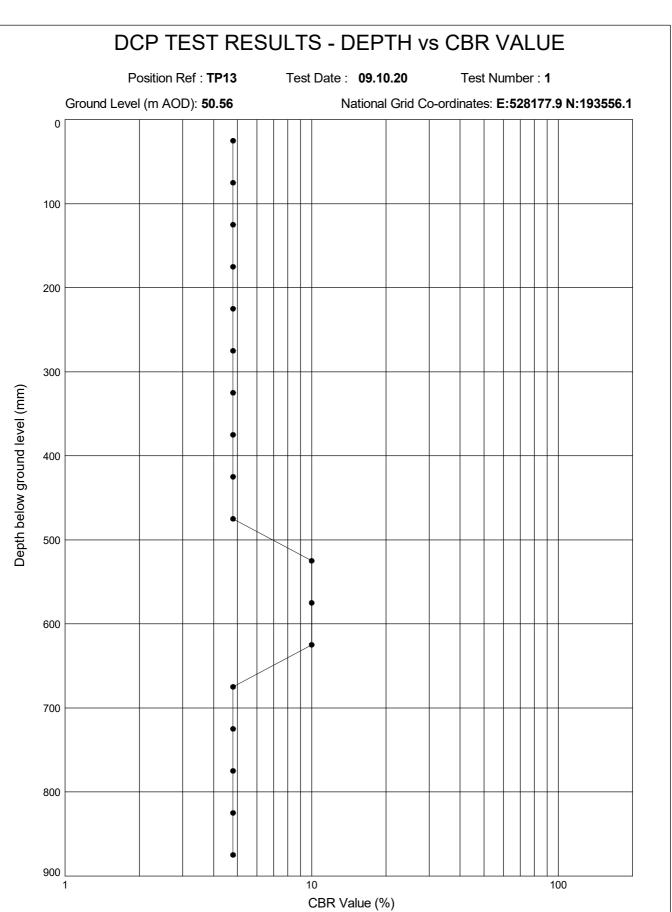
Notes: CBR values calculated after TRRL Road Note 8 method. Values over 100% are plotted on the 100% line.

CBR Value (%)

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By
EPH.

Date Checked By 08/01/21


Date

Contract

North London Busiess Park -Phase 1

Contract Ref:

1921321

Notes: CBR values calculated after TRRL Road Note 8 method. Values over 100% are plotted on the 100% line.

RSK Environment Ltd 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By
EP\$.

Date Checked By Date
08/01/21

Contract

North London Busiess Park - Phase 1

Contract Ref:

1921321

APPENDIX I GROUND GAS MONITORING DATA

Monitoring Date:	11/09/2020	Measurement of TOC / GL / TO		TOC		Offset to GL (m):						
Pre-Testing Remark	<u>S:</u>	1007 027 10	Air Temperatur	e:		19		Device:		GFM		
			°C. Weather:			SUNNY	/	Serial Number:		10941	10941	
			Ground Condit	ions:		DRY		Daily C		10011		
				LIGHT / MED	DIUM /							
			Tidal State: (if applicable) High / Low / Rising / Fa					LIGHT 1				
Exploratory Position	ID:	BH1	Monitoring Rou	ınd Number:	1			Test Nu	ımber:			
Install Type: SINGL	E / DOUBLE	SINGLE	<u>Pipe Ref</u> : 1) Sl Deep	hallow 2)	1			Pipe Di Other		nm/ 40mm / 50mm	40	
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		Gas tap SINGLE DOUBL	/	SINGLE				
Time Start (hh:mm)	09:58	09:59	1012		Obser	vations (e	e.g. on-site	activities).				
Time End (hh:mm)	09:59	10:04										
Stage 1 Flow Readings	Stage 1 Flow Readings	Stage 2 Gas Monitoring:	Methane (%/vol)	Carbon Dioxide (%/vol)		ygen 5/vol)	Cart mond (pp	xide	Hydrogen sulphide (ppm)	LEL (%)	PID (ppm)	
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)										
5	0.0	0	0.0	0.0		21.0				0.0	0.0	
10	0.0	15	0.0	3.4		20.5				0.0	0.1	
15	0.0	30	0.0	3.4		9.4				0.0	0.0	
20	0.0	60	0.0	3.4		8.7				0.0	0.0	
25 30	0.0	90 120	0.0	3.4		8.3				0.0	0.0	
40	0.0	180	0.0	3.4						0.0	0.0	
50	0.0	240	0.0	3.4	18.2 18.2				0.0	0.0		
60	0.0	300	0.0	3.4		8.2				0.0	0.0	
Stage 1 gas flow - Peak (I/h)										second intervals to btained. Typically		
Stage 1 gas flow - Steady State (I/h)				ur within 30 sec						ading (in Pa) shou		
STAGE 3	Depth (from date		DRY	Time:				LNAPL	Top (from d	atum) (m):		
WATER LEVEL OBSERVATION	(DTW): Depth (from date		4.92	Purge Start	;			DNAPL	. Top (from d	latum) (m):		
	base (DTB): (m Hole Purged: Y			Purge End:				Water (Observations	<u>3:</u>		
	Purge Volume: (ltrs)		Post-Purge	_							
		- Ton -f C	(TOC)	(DTW) (m) Post testir		Samples	Taken:	Yes	/ <u>No</u>			
		Top of CoverGround Leve	. ,	<u>remarks</u>	<u>:</u>	Sample	Media: G	as/Wat	<u>er</u>			
		Top of Pipew	. ,			Gas Car	nister St	art (mb)	1			
						Gas Car	nnister Ei	nd (mb)				
						Gas Car		uration (mins)			
•	Water (DTW)					De _l (from c	•	Sam	ple Ref	Type (EW / G)	Container	
		Depth to Bas (DTB)	e									
		Contract Na	me:	North London	Busines	ss pArk		Data C	ollected By:	AM		
R	SK	Project Man	ager / Engineer:	AK	C/AM			Checke	ed:			
		Contract Re	f:	1921321				Page n	umber:	1		
				TPF210 Iss	ue 6							

Monitoring Date:		Measurement of TOC / GL / TO		TOC		Offset to GL (m):						
Pre-Testing Remark		TOC / GL / TO	Air Temperatur	re:		<u>GL (III).</u> 19		Device:		GFM		
			°C Weather:			SUNNY	,	Serial Nu	mhor:	10941		
			Ground Condit	ione:		DRY				10941		
					DIUM / STRONG			Daily Check:				
								LIGHT				
			Tidal State: (if a	applicable) High	/ Low	/ Rising /	Falling	1				
Exploratory Position	ID:	BH2	Monitoring Rou	ınd Number:	1			Test Num	nber:	1		
Install Type: SINGL	LE / DOUBLE	SINGLE	Pipe Ref: 1) S Deep	hallow 2)	1			Pipe Diameter: 19mm/ 40mm / 50mm / 40 Other (mm)				
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		Gas tap SINGLE DOUBLI	/	SINGLE				
Time Start (hh:mm)	09:48	09:49	1012		Obser	vations (e	e.g. on-site	activities):				
Time End (hh:mm)	09:49	09:54										
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Ox	ygen	Cark		Hydrogen	LEL LEL	PID	
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%	/vol)	mono (pp		sulphide (ppm)	(%)	(ppm)	
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	, ,		,	,	(1)	,	(11)	,	W 1 /	
5	0.0	0	0.0	0.0	2	22.2				0.0	0.0	
10	0.0	15	0.0	5.0	1	9.6				0.0	0.0	
15	0.0	30	0.0	6.0		7.1				0.0	0.0	
20	0.0	60	0.0	5.1		6.3				0.0	0.0	
25	0.0	90	0.0	5.2		5.8				0.0	0.0	
30	0.0	120	0.0	5.2		5.6				0.0	0.0	
40	0.0	180	0.0			5.5				0.0	0.0	
				5.2								
50	0.0	240	0.0	5.2		5.5				0.0	0.0	
60	0.0	300	0.0	6.2	1	5.5				0.0	0.0	
Stage 1 gas flow -			Note: Flow sho	uld be recorde	d at 5 s	econd in	tervals u	o to 30 se	conds, 10	second intervals to	o 2 minutes	
Peak (I/h)										obtained. Typically		
Stage 1 gas flow - Steady State (I/h)			recorded during		onas to	a minute	e. The all	terentiai p	ressure re	eading (in Pa) shou	id also be	
STAGE 3	Depth (from datu	ım) to water	4.8	Time:				LNAPL T	op (from d	datum) (m):		
WATER LEVEL	(DTW):	(m)										
OBSERVATION	Depth (from datubase (DTB): (m)		4.97	Purge Start	:			DNAPL T	op (from o	datum) (m):		
	Hole Purged: Ye			Purge End:				Water Ob	servation	<u>s:</u>		
	Purge Volume: (I	trs)		Post-Purge	=							
				(DTW) (m) Post testir	ng	Samples	Taken:	Yes /	No			
		Top of Cover	` '	remarks				as/Water				
		- Ground Leve ⁻ Top of Pipew	, ,				nister St					
		iop of Pipew	OIK (IOP)			Gas Car						
								uration (m	ino)			
		.				De				_ ,	_	
		Depth to Water (DTW)				(from c		Sampl	e Ref	Type (EW / G)	Container	
		Depth to Bas	e									
		- (DTB)										
		Contract Na	me:	North London	Busine	ss Park		Data Coll	ected By:	AM		
	CK	Project Mana	ager / Engineer:	AK	(/AM			Checked				
		Contract Re		1921321				Page nur	nber:	2		
								J				
				TPF210 Iss	ue 6							

Monitoring Date:	11/09/2020	Measurement of TOC / GL / TO		TOC		Offset to GL (m):							
Pre-Testing Remark	<u>s:</u>	100701710	Air Temperatur	re:		<u>OL (III).</u> 19		Device:		GFM			
			°C Weather:			SUNNY	/	Serial Number:		10941			
			Ground Condit	ions:		DRY		Daily C		10941			
				LIGHT / MED	DIUM /		<u> </u>						
			Tidal State: (if applicable) High / Low / Rising / Falling						LIGHT				
			ridai Otate. (ii e	applicable / Trigit	I / LOW /	/ Kisirig /	<u>r annig</u>						
Exploratory Position	ID:	ВН3	Monitoring Rou	ınd Number:	1			Test Nu	ımber:	1			
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	hallow 2)	1			Pipe Di Other		nm/ 40mm / 50mm	/ 40		
Time of			Бсср			Gas tap).	SINGL					
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		DOUBL							
Time Start (hh:mm)	09:34	09:35	1012		Obser	vations (e	e.g. on-site	activities):					
Time End (hh:mm)	09:35	09:40											
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Ox	ygen	Carl		Hydrogen		PID		
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%	/vol)	mond (pp		sulphide (ppm)	(%)	(ppm)		
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)											
5	0.0	0	0.0	0.0		21.4				0.0	0.0		
10	0.0	15	0.0	0.9		21.3				0.0	0.1		
15	0.0	30	0.0	1.5		20.1				0.0	0.1		
20	0.0	60	0.0	1.5		9.6				0.0	0.1		
25 30	0.0	90 120	0.0	1.5 1.5		9.5				0.0	0.0		
40	0.0	180	0.0	1.5						0.0	0.1		
50	0.0	240	0.0	1.5		19.4 19.4				0.0	0.1		
60	0.0	300	0.0	1.5		9.4				0.0	0.1		
	0.0	000	0.0	1.0	<u> </u>					0.0			
Stage 1 gas flow -										second intervals to			
Peak (I/h) Stage 1 gas flow -										obtained. Typically eading (in Pa) shοι			
Steady State (I/h)			recorded during						•				
STAGE 3 WATER LEVEL	Depth (from date (DTW):	um) to water (m)	3.93	Time:				LNAPL	Top (from c	datum) (m):			
OBSERVATION	Depth (from date	um) to well	4.9	Purge Start				DNAPL	. Top (from o	datum) (m):			
	base (DTB): (m Hole Purged: Y			Purge End:				Water (Observation	s:			
	Purge Volume: (Post-Purge									
				(DTW) (m) Post testin	na	Samples	Taken:	Yes	/ No				
		Top of Cover	` '	remarks		Sample			_				
		 Ground Leve Top of Pipew 	, ,			Gas Car			_				
		,,	, -,			Gas Car	nnister Eı	nd (mb)					
						Gas Car	nister D	uration (mins)				
		Depth to				De _l	•			Type (EW / G)	Container		
		Water (DTW)				(HOH)	autuiii)						
		Depth to Bas	e										
		(DTB)											
		Contract Na	me:	North London	Busine	ss Park		Data C	ollected By:	AM			
R	SK	Project Man	ager / Engineer:	Ak	(/AM			Checke	ed:				
		Contract Re	f:	1921321				Page n	umber:	3			
				TPF210 Iss	ue 6								
								_					

Date: TOC / GL / TOP / Other GL (m);	nm / 40
Weather: OVERCAST Serial Number:	m / 40
Ground Conditions: DRY Daily Check:	m / 40
Wind: NONE / LIGHT / MEDIUM / STRONG NONE Tidal State: (if applicable) High / Low / Rising / Falling Exploratory Position ID: BH4 Monitoring Round Number: Install Type: SINGLE / DOUBLE SINGLE Pipe Ref: 1) Shallow 2) Deep Time of Monitoring (hh:mm) Flow readings Gas readings Flow readings Gas readings Operation Differential Pressure (mb) Pressure (mb) Differential Pressure (mb) Double Observations (e.g. on-site activities):	m / 40
NONE Tidal State: (if applicable) High / Low / Rising / Falling	m / 40
Exploratory Position ID: BH4 Monitoring Round Number: Install Type: SINGLE / DOUBLE SINGLE Pipe Ref: 1) Shallow 2) Deep Time of Monitoring (hh:mm) Flow readings Gas readings Gas readings Flow readings Gas readings Observations (e.g. on-site activities):	m / 40
Install Type: SINGLE / DOUBLE SINGLE Pipe Ref: 1) Shallow 2) 1 Pipe Diameter: 19mm/ 40mm / 50m Other (mm)	m / 40
Time of Monitoring (hh:mm) Flow readings Gas readings Gas readings Flow readings Gas readings Atmospheric Pressure (mb) Differential Pressure (mb) Differential DOUBLE Observations (e.g. on-site activities):	m / 40
Time of Monitoring (hh:mm) Flow readings Gas readings Gas readings Atmospheric Pressure (mb) Differential Pressure (mb) DOUBLE SINGLE ODUBLE SINGLE ODUBLE Observations (e.g. on-site activities):	
Time End (hh:mm) 09:23 09:28	
Stage 1 Flow Stage 2 Gas Methane Carbon Oxygen Carbon Hydrogen LEL	PID
Readings Readings Monitoring: Dioxide monoxide sulphide (%/vol) (%/vol) (ppm) (%)	(ppm)
Time of flow monitoring (sec) Flow Reading (I/hr) Time of gas monitoring (sec)	
5 0.0 0 0.0 0.0 21.5 0.0	0.0
10 0.0 15 0.0 6.8 19.0 0.0	0.0
15 0.0 30 0.0 7.3 17.6 0.0 20 0.0 60 0.0 7.3 15.0 0.0	0.0
20 0.0 60 0.0 7.3 15.0 0.0 25 0.0 90 0.0 7.5 11.6 0.0	0.0
30 0.0 120 0.0 7.5 11.5 0.0	0.0
40 0.0 180 0.0 7.6 11.4 0.0	0.0
50 0.0 240 0.0 7.6 11.4 0.0	0.0
60 0.0 300 0.0 7.6 11.4 0.0	0.0
Stage 1 gas flow - Peak (I/h) Note: Flow should be recorded at 5 second intervals up to 30 seconds, 10 second intervals and 30 second intervals up to 3 minutes or until steady-state readings are obtained. Typica	lly, steady state
Stage 1 gas flow - conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) ships steady State (I/h) recorded during this period.	ould also be
STAGE 3 Depth (from datum) to water DRY Time: LNAPL Top (from datum) (m):	T
WATER LEVEL (DTW): (m) Purge Start: DNAPL Top (from datum) (m):	
base (DTB): (m)	
Hole Purged: Yes / No Purge End: Water Observations: Deat Purge	
Purge Volume: (ltrs) Post-Purge (DTW) (m)	
Post testing Samples Taken: Yes / No remarks:	
Sample Media: Gas/Water	
Gas Cannister Start (mb)	
Gas Cannister End (mb)	
Gas Cannister Duration (mins)	
Depth Sample Ref Type (EW / G)	Container
Water (DTW)	
Depth to Base	
(DTB)	
Contract Name: North London Business Park Data Collected By: AM	
Project Manager / Engineer: AK/AM Checked:	
Contract Ref: 1921321 Page number: 4	-
TPF210 Issue 6	

Monitoring Date:	11/09/2020	Measurement of TOC / GL / TO		TOC		Offset to GL (m):					
Pre-Testing Remark	<u>S:</u>	100701710	Air Temperatur	re:		19		Device:		GFM	
			°C. Weather:			OVERCA	ST	Serial Number:		10941	
			Ground Condit	ions:		DRY	-	Daily C		10041	
				LIGHT / MED	DIUM /						
			Tidal State: (if applicable) High / Low / Rising / Fa					LIGHT			
Evaloratory Desition	ID.	BH5	Monitoring Rou	and Number	I ₄			Toot No	una la a vi		
Exploratory Position			_	_	1			Test Nu	<u>.</u>	1	
Install Type: SINGL	.E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	hallow 2)	1			Pipe Di Other		nm/ 40mm / 50mm	40
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		Gas tap SINGLE DOUBLI	/	SINGLI			
Time Start (hh:mm)	10:25	10:26	1012		Observ	vations (e	e.g. on-site	activities):			
Time End (hh:mm)	10:26	10:31									
Stage 1 Flow Readings	Stage 1 Flow Readings	Stage 2 Gas Monitoring:	Methane (%/vol)	Carbon Dioxide (%/vol)		ygen /vol)	Cart mond (pp	xide	Hydrogen sulphide (ppm)		PID (ppm)
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)									
5	0.0	0	0.0	0.0		2.4				0.0	0.0
10	0.0	15	0.0	5.1		9.9				0.0	0.1
15	0.0	30	0.0	5.2		6.8				0.0	0.0
20	0.0	60 90	0.0	5.3 5.3		6.1 5.8				0.0	0.0
30	0.0	120	0.0	5.3		5.6				0.0	0.0
40	0.0	180	0.0	5.3		5.5				0.0	0.0
50	0.0	240	0.0	5.3		5.5				0.0	0.0
60	0.0	300	0.0	5.3	1	5.5				0.0	0.0
Stage 1 gas flow -			Note: Flow sho	ould be recorde	d at 5 se	econd int	tervals u	p to 30 s	seconds. 10	second intervals to	o 2 minutes
Peak (I/h)			and 30 second	intervals up to	3 minut	es or unt	til steady	-state re	adings are	obtained. Typically	, steady state
Stage 1 gas flow - Steady State (I/h)			recorded during		onas to	a minute	e. The all	terentia	pressure re	eading (in Pa) shou	lid also be
STAGE 3	Depth (from date		2.8	Time:				LNAPL	Top (from d	datum) (m):	
WATER LEVEL OBSERVATION	(DTW): Depth (from date base (DTB): (m		4.95	Purge Start	.				. Top (from o	datum) (m):	
	Hole Purged: Y			Purge End:				Water 0	Observation	<u>s:</u>	
	Purge Volume: (ltrs)		Post-Purge	-						
		- Top of C	(TOC)	(DTW) (m) Post testing		Samples	Taken:	Yes	/ <u>No</u>		
		Top of CoverGround Leve	. ,	remarks	<u>:</u> †	Sample l	Media: G	ias/Wat	<u>er</u>		
		Top of Pipew	. ,			Gas Car	nister St	art (mb)			
					ļ	Gas Car					
						Gas Car De		uration (mins)			
	Water (DTW)				•	(from c	•	Sam	ple Ref	Type (EW / G)	Container
		Depth to Bas (DTB)	e								
		Contract Na	me:	North London	Busines	ss Park		Data C	ollected By:	AM	
	CK	Project Man	ager / Engineer:	I AK	(/AM			Checke	ed:		
		Contract Re	f:	1921321				Page n	umber:	5	
				TPF210 Iss	sue 6						

Monitoring Date:		TOC / GL / TOI		100		GL (m):							
Pre-Testing Remarks	<u>s:</u>		Air Temperature:					Device	<u>:</u>	GFM	GFM		
			°C. Weather:					Serial I	Number:	10941	10941		
			Ground Conditi	ons:				Daily C		10011			
			Wind: NONE / LIGHT / MEDIUM / STRONG										
			<u> </u>	2.0 /22	,			LIGHT					
			Tidal State: (if applicable) High / Low / Rising / Falling										
Exploratory Position	ID:	ВН6	Monitoring Rou	nd Number:	1			Test N	umber:	1			
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) Sh	nallow 2)	1			Pipe D	iameter: 19	mm/ 40m	m / 50m	m / 40	
			Deep					Other	` '				
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		<u>Gas tap</u> SINGLE DOUBLI	1	SINGLE					
Time Start (hh:mm)	10:09	10:10	1012		Obse	rvations (e	e.g. on-site	activities)					
Time End (hh:mm)	10:10	10:15											
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	O	kygen	Carl	bon	Hydroge		LEL	PID	
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(9)	%/vol)	mond (pp		sulphide (ppm)	9	(%)	(ppm)	
Time of flow monitoring	Flow Reading (I/hr)	Time of gas	(70/401)	(70/401)	('	0/401)	(PP	''' <i>)</i>	(ррііі)		(70)	(ррііі)	
(sec) 5	0.0	monitoring (sec)	0.0	0.0	,	21.2					0.0	0.0	
5 10		15	0.0	1.7		21.2					0.0	0.0	
	0.0												
15	0.0	30	0.0	1.7		20.6					0.0	0.0	
20	0.0	60	0.0	1.7	2	20.4					0.0	0.0	
25	0.0	90	0.0	1.7		20.2					0.0	0.0	
30	0.0	120	0.0	1.7	2	20.2					0.0	0.0	
40	0.0	180	0.0	1.7	2	20.2					0.0	0.0	
50	0.0	240	0.0	1.7	2	20.2					0.0	0.0	
60	0.0	300	0.0	1.7	2	20.2					0.0	0.0	
Stage 1 gas flow - Peak (I/h)			Note: Flow sho					•					
Stage 1 gas flow -			conditions occu	ır within 30 seco						re obtained. Typically, steady state reading (in Pa) should also be			
Steady State (I/h)			recorded during			•							
STAGE 3 WATER LEVEL	Depth (from datu (DTW):	um) to water (m)	DRY	Time:				LNAPL	Top (from	datum) (n	<u>1):</u>		
OBSERVATION		rom datum) to well 4.97		Purge Start:		DNAPI	Top (from	datum) (r	<u>n):</u>				
	Hole Purged: Ye			Purge End:				Water	Observatio	ns:	1		
	Purge Volume: (I	ltrs)		Post-Purge		-							
				(DTW) (m) Post testir	ng	Samples	Taken:	Yes	/ <u>No</u>				
		Top of Cover	. ,	remarks	-	Sample							
		 Ground Level Top of Pipew 				Gas Car							
		top of Pipew	ork (TOP)			Gas Car			-				
						De _l		Sample Ref Ty					
		 Depth to Water (DTW) 				(from c				Type (E	W / G)	Container	
		(5100)											
		Depth to Bas	e										
		·- (DTB)	-										
		Contract Na	me:	North London	Busine	ss Park		Data C	ollected By		AM		
		Project Mana	ager / Engineer:	AK	Z/AM			Check	ed:				
		Contract Ret		1921321				Page	iumber:		6		
		Contract Ne						. age i			<u> </u>		
				TPF210 Iss	ue 6								

<u>Monitoring</u> <u>Date:</u>	11/09/2020	TOC / GL / TO		100		GL (m):	•					
Pre-Testing Remark	S:		Air Temperatur	e:				Device	<u>:</u>	GFM		
			°C. Weather:					Serial I	Number:	10941		
			Ground Conditi	ons:				Daily C	heck:			
			Wind: NONE /	LIGHT / MED	IUM /	STRON	G					
					,.			LIGHT				
			Tidal State: (if a		/ Low	/ Rising /	Falling					
Exploratory Position	ID:	ВН7	Monitoring Rou	nd Number:	1			Test N	umber:	1		
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) Sh	nallow 2)	1				iameter: 19	mm/ 40m	m / 50m	m / 40
T			Deep			0 1		Other	,			
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		<u>Gas tap</u> SINGLE DOUBLI	/	SINGL	E			
Time Start (hh:mm)	10:50	10:51	1012		Obse	rvations (e	e.g. on-site	activities)				
Time End (hh:mm)	10:51	10:56										
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	O	kygen	Carl		Hydroge		LEL	PID
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%	%/vol)	mond (pp		sulphide (ppm)	;	(%)	(ppm)
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)				·						
5	0.0	0	0.0	0.0	2	22.1					0.0	0.0
10	0.0	15	0.0	0.1	,	18.9					0.0	0.1
15	0.0	30	0.0	0.1	,	15.5					0.0	0.1
20	0.0	60	0.0	0.1	•	15.1					0.0	0.1
25	0.0	90	0.0	0.1	•	14.6					0.0	0.1
30	0.0	120	0.0	0.1	•	14.0					0.0	0.1
40	0.0	180	0.0	0.1	•	13.7					0.0	0.1
50	0.0	240	0.0	0.1	•	13.6					0.0	0.1
60	0.0	300	0.0	0.1	•	13.6					0.0	0.1
Stage 1 gas flow - Peak (I/h)			Note: Flow sho									
Stage 1 gas flow -			and 30 second conditions occu									
Steady State (I/h)			recorded during	g this period.						<u> </u>	,	
STAGE 3 WATER LEVEL	Depth (from date (DTW):	um) to water (m)	DRY	Time:				LNAPL	Top (from	datum) (n	<u>n):</u>	
OBSERVATION	Depth (from date base (DTB): (m	um) to well	4.98	Purge Start				DNAPI	Top (from	datum) (r	<u>n):</u>	
	Hole Purged: Yo			Purge End:				Water	Observation	ns:_		
	Purge Volume: (ltrs)		Post-Purge	-							
			/=o.s`	(DTW) (m) Post testir	ng	Samples	Taken:	Yes	/ <u>No</u>			
		- Top of Cover	. ,	remarks	<u>.</u>	Sample l	Media: G	Sas/Wat	er			
		– Ground Leve [–] Top of Pipew	, ,			Gas Car	nister St	tart (mb)			
		, 1	. ,			Gas Car	nister E	nd (mb)				
						Gas Car	nister D	uration	(mins)			
		- Depth to				Dep		San	nple Ref	Type (E	W / G)	Container
		Water (DTW)				(from c	iatum)			, \ <u> </u>	,	
		.				<u> </u>						
		Depth to Bas (DTB)	e			<u> </u>						
		Contract Na	me:	North London	Busine	ss Park		Data C	ollected By:		AM	
		Project Man	ager / Engineer:	AK	/AM			Check				
		Contract Re		1921321					iumber:		7	
		23									Ľ	
				TPF210 Iss	ue 6							

<u>Monitoring</u> <u>Date:</u>		TOC / GL / TO		100		Offset to GL (m):	<u>.</u>					
Pre-Testing Remarks	<u>s:</u>		Air Temperatur	e:				Device	<u>:</u>	GFM		
			°C Weather:					Serial I	Number:	10941		
			Ground Conditi	ons:				Daily C	heck:			
			Wind: NONE /	LIGHT / MED	IUM /	STRON	G					
			Tidal State: (if a	applicable) High	/Low	/ Rising /	Falling	LIGHT				
			ridai otato. (ii c	ipplicable / r ligh	7 LOW	7 Titoling 7	<u>r uning</u>					
Exploratory Position	ID:	ВН8	Monitoring Rou	nd Number:	1			Test N	umber:	1		
Install Type: SINGL	.E / DOUBLE	SINGLE	Pipe Ref: 1) Sh	nallow 2)	1				iameter: 19	mm/ 40m	m / 50m	m / 40
Time of			Deep			Gas tap).	Other SINGL	,			
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		SINGLE DOUBL	1	002	_			
Time Start (hh:mm)	10:36	10:37	1012		Obse	rvations (e	e.g. on-site	activities)				
Time End (hh:mm)	10:37	10:42										
Stage 1 Flow Readings	Stage 1 Flow Readings	Stage 2 Gas Monitoring:	Methane	Carbon Dioxide	O	xygen	Carl mond		Hydroge sulphide		LEL	PID
	rtcadings		(%/vol)	(%/vol)	(%	%/vol)	(pp		(ppm)		(%)	(ppm)
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)										
5	0.0	0	0.0	0.0		22.3					0.0	0.0
10	0.0	15	0.0	7.3		18.7					0.0	0.0
15	0.0	30	0.0	7.4		15.6					0.0	0.0
20	0.0	60	0.0	7.5		13.4					0.0	0.0
25	0.0	90	0.0	7.5		12.9					0.0	0.0
30	0.0	120	0.0	7.5		12.6					0.0	0.0
40	0.0	180	0.0	7.5		12.6					0.0	0.0
50	0.0	240	0.0	7.5		12.5					0.0	0.0
60	0.0	300	0.0	7.5	ĺ	12.5					0.0	0.0
01			N. (5)					1 00				
Stage 1 gas flow - Peak (I/h)			Note: Flow sho and 30 second									
Stage 1 gas flow - Steady State (I/h)			conditions occu	ır within 30 seco								
STAGE 3	Depth (from datu		DRY	Time:				LNAPL	Top (from	datum) (n	n):	
WATER LEVEL OBSERVATION	(DTW): Depth (from date		4.91	Purge Start	:			DNAPI	_ Top (from	datum) (r	<u>n):</u>	
	base (DTB): (m) Hole Purged: Ye			Purge End:				Water	Observatio	ns:		
	Purge Volume: (I	trs)	1	Post-Purge								
				(DTW) (m) Post testir	ng	Samples	Taken:	Yes	/ No			
		Top of Cover	` '	remarks		Sample						
		 Ground Leve Top of Pipew 	` '			Gas Car						
			(,			Gas Car	nnister E	nd (mb)				
						Gas Car	nnister D	uration	(mins)			
		Depth to				De	•	San	nple Ref	Type (E	W / G)	Container
		Water (DTW)				(from c	datum)	3611	,	71-5 (-	. 3/	
										_		
		Depth to Bas (DTB)	e			-		 				
		Contract Na	me:	North London	Busine	ss Park		Data C	ollected By	:	JW	
	CV	Project Man	ager / Engineer:	AK	Z/AM			Check				
		Contract Re		1921321				Page r	number:			
								321				
				TPF210 Iss	ue 6							

Monitoring Date:		Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Pre-Testing Remark		100702710	Air Temperatur	e:		17		Device:		GFM	
			°C Weather:			SUNNY	/	Sorial N	lumber:	10941	
			Ground Condit	ione:		DRY		Daily C		10941	
				LIGHT / MED	JUM /		G	Dully O	icon.		
							_	LIGHT			
			Tidal State: (if a	applicable) High	1 / Low	/ Rising /	Falling				
Exploratory Position	ID:	BH1	Monitoring Rou	ınd Number:	2			Test Nu	ımber:	1	
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	hallow 2)	1			Pipe Di		nm/ 40mm / 50mm	/ 40
Time of	1		реер			Gas tap).	SINGLE			
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		SINGLE DOUBL	1				
Time Start (hh:mm)	11:30	11:31	1008		Obser	vations (e.g. on-site	activities):			
Time End (hh:mm)	11:31	11:36									
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Ох	ygen	Cart		Hydrogen	LEL	PID
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%)	%/vol)	mond (pp		sulphide (ppm)	(%)	(ppm)
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	(70/401)	(70/401)	()	0, 401)	(PP		(ppm)	(70)	(ррш)
5	0.0	0	0.0	0.0	2	21.1				0.0	
10	0.0	15	0.0	2.8	2	20.5				0.0	
15	0.0	30	0.0	2.9	1	19.6				0.0	
20	0.0	60	0.0	2.9	1	19.1				0.0	
25	0.0	90	0.0	2.9	1	18.9				0.0	
30	0.0	120	0.0	2.9	1	18.8				0.0	
40	0.0	180	0.0	2.9	1	18.8				0.0	
50	0.0	240	0.0	2.9	1	18.7				0.0	
60	0.0	300	0.0	2.9	1	18.7				0.0	
Stage 1 gas flow -	0.0		Note: Flow sho	ould be recorde	d at 5 s	econd in	tervals u	p to 30 s	seconds, 10	second intervals to	o 2 minutes
Peak (I/h)			and 30 second	intervals up to	3 minu	tes or un	til steady	-state re	adings are	obtained. Typically	, steady state
Stage 1 gas flow - Steady State (I/h)	0.0		recorded during		onds to	a minute	e. The dif	ferential	pressure re	eading (in Pa) shou	ıld also be
STAGE 3	Depth (from datu	um) to water	DRY	Time:				LNAPL	Top (from d	datum) (m):	
WATER LEVEL OBSERVATION	(DTW): Depth (from datu	(m)	4.93	Purge Start				DNIADI	Tan /fram	datum) (m):	
	base (DTB): (m)	4.93	Fulge Start	<u>.</u>			DINAFL	Top (nom c	datum) (m).	
	Hole Purged: Ye	es / No		Purge End:				Water 0	Observation	<u>s:</u>	
	Purge Volume: (I	ltrs)		Post-Purge (DTW) (m)	<u>-</u>						
		T(C	(TOC)	Post testin		Samples	Taken:	Yes	/ <u>No</u>		
		Top of CoverGround Leve	. ,	remarks	<u>:</u>	Sample	Media: G	as/Wate	<u>er</u>		
7-7-1		Top of Pipew				Gas Car	nnister St	art (mb)			
					·	Gas Car	nnister Er	nd (mb)			
					•	Gas Car	nister D	uration (mins)		
		Depth to				De (from o	pth tatum)	Sam	ple Ref	Type (EW / G)	Container
		Water (DTW)				(IIOII)	acuiii)				
					,						
	Denth to Rase										
		Depth to Base(DTB)			,						
		Contract Na	me:	Noth London E	Busines	s Park		Data Co	ollected By:	AM	
	CK	Project Man	ager / Engineer:	: Ak	K/AM			Checke	d:		
Contract Re			f:	1921321				Page n	umber:	1	
				TPF210 Iss	<i>F</i>						
				IPFZIU ISS	ue 0						

Monitoring Date:		Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Pre-Testing Remark		100702710	Air Temperatur	e:		17		Device:		GFM	
			°C Weather:			SUNNY	/	Sorial N	lumber:	10941	
			Ground Condit	ione:		DRY		Daily C		10941	
				LIGHT / MED	JUM /		G	Dully O	TOOK.		
								LIGHT			
			Tidal State: (if a	applicable) High	ı / Low	/ Rising /	Falling				
Exploratory Position	ID:	BH2	Monitoring Rou	ınd Number:	2			Test Nu	ımber:	1	
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI	hallow 2)	1					nm/ 40mm / 50mm	n / 40
Time of	1		Deep			Gas tap).	Other (•		
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		SINGLE DOUBL	/				
Time Start (hh:mm)	11:20	11:21	1008		Obse	rvations (e.g. on-site	activities):			
Time End (hh:mm)	11:21	11:26									
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	0:	xygen	Cart	oon	Hydrogen		PID
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	/0	%/vol)	mono		sulphide (ppm)	(%)	(nnm)
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	(70/ V OI)	(70/401)	(/	0/401)	(pp	··· <i>'</i>	(ррііі)	(70)	(ppm)
5	0.0	0	0.0	0.0		21.2				0.0	
10	0.0	15	0.0	4.7	:	20.2				0.0	
15	0.0	30	0.0	4.9	<u> </u>	18.3				0.0	
20	0.0	60	0.0	4.9		17.1				0.0	
25	0.0	90	0.0	4.9	 	16.8				0.0	
30	0.0	120	0.0	4.9		16.7				0.0	
40	0.0	180	0.0	4.9		16.6				0.0	
50	0.0	240	0.0	4.9		16.5				0.0	
60	0.0	300	0.0	4.9		16.5				0.0	
Stage 1 gas flow - Peak (l/h)	0.0									second intervals t	
Stage 1 gas flow -	0.0									obtained. Typically eading (in Pa) shou	
Steady State (I/h)			recorded during								
STAGE 3 WATER LEVEL	Depth (from datu (DTW):	um) to water (m)		Time:				LNAPL	Top (from c	datum) (m):	
OBSERVATION	Depth (from datu	` '	4.98	Purge Start	<u>t</u> :			DNAPL	Top (from o	datum) (m):	
	base (DTB): (m)			Dunna Endi				\\/ - t = # (Dh +i		
	Hole Purged: Ye			Purge End:				vvaler (Observation	<u>o.</u>	
	Purge Volume: (I	<u>us)</u>		Post-Purge (DTW) (m)							
		Top of Cover	(TOC)	Post testir remarks		Samples	Taken:	Yes	/ <u>No</u>		
, ,		- Ground Leve	` '	ICIIIAIKS	<u>. </u>	Sample	Media: G	as/Wate	er		
7-1		Top of Pipew				Gas Car	nnister St	art (mb)			
						Gas Car	nnister Er	nd (mb)			
						Gas Car	nnister Du	uration (mins)		
		Depth to				De (from o	pth datum)	Sam	ple Ref	Type (EW / G)	Container
	Water (D	Water (DTW)									
	Denth to Base							+			
	Depth to Base (DTB)								+		
		Contract Na	me:	North London	Busine	ss Park		Data Co	ollected By:	AM	
	CK	Project Man	ager / Engineer:	: AK	K/AM			Checke	d:		
Contract Re			f:	1921321				Page n	umber:	2	
				TDF340 I							
				TPF210 Iss	ue b						

Monitoring Date:		Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Pre-Testing Remark		100702710	Air Temperatur	e:		<u>01 (11).</u> 17		Device:		GFM	
			°C Weather:			SUNN	/	Sorial N	lumber:	10941	
			Ground Condit	ione:		DRY		Daily C		10941	
				LIGHT / MED	JUM /		G	Dully O	icon.		
								LIGHT			
			Tidal State: (if a	applicable) High	ı / Low	/ Rising /	Falling				
Exploratory Position	ID:	ВН3	Monitoring Rou	ınd Number:	2			Test Nu	ımber:	1	
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI	hallow 2)	1					nm/ 40mm / 50mm	n / 40
Time of	1		Deep			Gas tap).	Other (
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		SINGLE	1				
Time Start (hh:mm)	11:10	11:11	1008		Obse	rvations (e.g. on-site	activities):			
Time End (hh:mm)	11:11	11:16									
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	O:	xygen	Cart		Hydrogen		PID
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	/0	%/vol)	mond (pp		sulphide (ppm)	(%)	(ppm)
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	(70/VOI)	(70/001)	(3	0/ V OI)	(pp	,	(ppiii)	(70)	(ρριτι)
5	0.0	0	0.0	0.0		20.5				0.0	
10	0.0	15	0.0	1.6	:	20.4				0.0	
15	0.0	30	0.0	1.6	:	20.0				0.0	
20	0.0	60	0.0	1.6		19.6				0.0	
25	0.0	90	0.0	1.6		19.6				0.0	
30	0.0	120	0.0	1.6		19.5				0.0	
40	0.0	180	0.0	1.6	 	19.5				0.0	
50	0.0	240	0.0	1.6		19.5				0.0	
60	0.0	300	0.0	1.6		19.5				0.0	
Stage 1 gas flow - Peak (I/h)	0.0									second intervals tobtained. Typically	
Stage 1 gas flow -	0.0		conditions occu	ur within 30 sec						eading (in Pa) sho	
Steady State (I/h)	D # # 11		recorded during								T
STAGE 3 WATER LEVEL	Depth (from datu (DTW):	um) to water (m)		<u>Time</u> :				LNAPL	Top (from c	datum) (m):	
OBSERVATION	Depth (from datu		4.92	Purge Start	<u>t</u> :			DNAPL	Top (from o	datum) (m):	
	base (DTB): (m) Hole Purged: Ye			Purge End:	,			Water (Observation	s.	
	Purge Volume: (I			Post-Purge							
	i digo volumor,			(DTW) (m)							
		- Top of Cover	(TOC)	Post testir remarks			Taken:		/ <u>No</u>		
		- Ground Leve	l (GL)		_		Media: G				
		Top of Pipew	ork (TOP)				nnister St				
							nnister Ei				
							nnister D	uration (mins)		
		Depth to					pth datum)	Sam	ple Ref	Type (EW / G)	Container
	Water (DTW	vvater (DTVV)									
	Depth to Base							+			
	Depth to Base (DTB)										
		Contract Na	me:	North London	Busine	ss Park		Data Co	ollected By:	AM	
	CV	Project Man	ager / Engineer:	: Ak	K/AM			Checke	d:		
Contract Re				1921321				Page n	umber:	3	
								J			
				TPF210 Iss	sue 6						

All Temperature Section Communities	Monitoring Date:	28/09/2020	Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Weather: SUNNY Sarial Number: 1041		<u> </u>	1007 027 10	Air Temperatur	e:				Device:		GFM	
							SHIMNIN	/	Sprial N	umber:	100/1	
Wind: NONE / LIGHT / MEDIUM / STRONG LIGHT				-	ione:						10941	
Expiratory Position ID: SH4 Monitoring Round Number: 2 Test Number: 1						DIUM /		G	Daily Of	icor.		
Exploratory Position ID.									LIGHT			
Distal Type: SINGLE / DOUBLE SINGLE Distal Processing Single Differential Pressure (mb) Dif				Tidal State: (if a	applicable) High	/ Low	/ Rising /	Falling				
Deep Gast acc.	Exploratory Position	ID:	BH4	Monitoring Rou	ınd Number:	2			Test Nu	mber:	1	
Time of Monitoring (ht.mm)	Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI	hallow 2)	1					nm/ 40mm / 50mm	40
Monitoring (hh.mm)		•		Deep	1		<u> </u>			•		
Time End (hh.mm)	Monitoring	Flow readings	Gas readings				SINGLE	1	SINGLE	:		
Stage 1 Flow Readings Readi	Time Start (hh:mm)	10:55	10:56	1008		Obser	vations (e.g. on-site	activities):			
Readings Readings Monitoring: Time of data. Time of	Time End (hh:mm)	10:56	11:01									
Readings Readings Monitoring: (%/vol) Dioxide (%/vol) (%/vol) (%/vol) (mpm) (%) (mpm) (%) (mpm) (mpm) (%) (mpm) (mpm	Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Ox	ygen	Cart	oon	Hydrogen	LEL	PID
Time of Ibas monitoring Flow Reading (lift) monitoring (see)					Dioxide			mono	xide	sulphide		
Stage 1 gas flow-Peak (l/h) Stage 2 gas flow-Stage 3		Flow Reading (I/hr)	Time of gas monitoring (sec)	(70/VOI)	(70/VOI)	(%	o/ v OI)	(ppi	''')	(bbiii)	(70)	(μριτι)
15		0.1		0.0	0.0	2	21.1				0.0	
20 0.0 60 0.0 6.9 15.4 0.0 25 0.0 90 0.0 7.0 15.0 0.0 30 0.0 120 0.0 7.0 14.8 0.0 40 0.0 180 0.0 7.0 14.7 0.0 50 0.0 240 0.0 7.0 14.6 0.0 60 0.0 300 0.0 7.0 14.6 0.0 Stage 1 gas flow - Peak (l/h) Stage 3 flow - Steady State (l/h) STAGE 3 Depth (from datum) to water (DTW): (m) Depth (from datum) to water (DTW): (m) Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge Volume: (tre) Post-Purge (DTW): Sample Media: GasWater (Media: GasWater (Med	10	0.0	15	0.0	6.8	1	18.7				0.0	
25	15	0.0	30	0.0	6.9	1	17.0				0.0	
30	20	0.0	60	0.0	6.9	1	15.4				0.0	
A0	25	0.0	90	0.0	7.0	1	15.0				0.0	
Stage 1 gas flow - Peak (l/h) Depth (from datum) to water (DTW):	30	0.0	120	0.0	7.0	1	14.8				0.0	
Stage 1 gas flow- Peak (l/h) Stage 1 gas flow- Peak (l/h) Stage 1 gas flow- Peak (l/h) Depth (from datum) to water (DTW): (m) Depth (from datum) to water (DTW): (40	0.0	180	0.0	7.0	1	14.7				0.0	
Stage 1 gas flow - Peak (l/h) Stage 1 gas flow - Peak (l/h) Stage 1 gas flow - Peak (l/h) Depth (from datum) to water (DTW): (m) Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge Volume: (ltrs) Post Leving Depth (from datum) to well base (DTB): (m) Purge Volume: (ltrs) Post Leving Depth (from datum) to well base (DTB): (m) Post Leving Depth (from datum) to well base (DTB): (m) Post Leving Depth (from datum) to well base (DTB): (m) Purge Volume: (ltrs) Post Leving Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from	50	0.0	240	0.0	7.0	1	14.6				0.0	
Peak (I/h) Stage 1 gas flow - Steady State (I/h) Depth (from datum) to water (DTW): OBSERVATION Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge Volume: (Itrs) And 30 second intervals up to 3 minutes or until steady-state readings are obtained. Typically, steady state conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. Time: LNAPL Top (from datum) (m): DNAPL Top (from datum) (m): DNAPL Top (from datum) (m): Purge End: Post testing remarks: Sample Media: Gas/Water	60	0.0	300	0.0	7.0	1	14.6				0.0	
Stage 1 gas flow - Steady State (I/h) STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (DTW): (m) Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge Volume: (Itrs) Depth (from datum) to well passe (DTB): (m) Post-Purge (DTW) (m) Post testing recorded during this period. Conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. LNAPL Top (from datum) (m): DNAPL Top (from datum) (m): Water Observations: Post-Purge (DTW) (m) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water		0.0										
Steady State (I/h) STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (DTW): (m) Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge End: Post-Purge (DTW) (m) Post testing remarks: Sample Media: Gas/Water	•	0.0										
Depth (from datum) to well Depth (from datum) to well Dase (DTB): (m) Depth (from datum) to well Depth (from datum) to wel	Steady State (I/h)			recorded during	g this period.							
Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge End: Purge End: Post-Purge (DTW) (m) Post testing remarks: Sample Media: Gas/Water				DRY	<u>Time</u> :				LNAPL	Top (from c	datum) (m):	
Hole Purged: Yes / No Purge End: Water Observations: Purge Volume: (Itrs) Post-Purge (DTW) (m) Post testing remarks: Sample Media: Gas/Water		Depth (from date	um) to well	4.83	Purge Start	: :			DNAPL	Top (from o	datum) (m):	
Purge Volume: (ltrs) Post-Purge (DTW) (m) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water					Purge End:				Water C	bservation	s:	
(DTW) (m)											-	
remarks: Sample Media: Gas/Water					(DTW) (m)		C	T-!		/ 1		
Sample Media: Gas/Water			- Top of Cover	(TOC)			-					
Ground Level (GL)										<u> </u>		
Gas Cannister Start (mb)			[–] Top of Pipew	ork (TOP)								
Gas Cannister End (mb)						,						
Gas Cannister Duration (mins)												
Depth Sample Ref Type (EW / G) Container (from datum)			•						Sam	ole Ref	Type (EW / G)	Container
		water (DTW)										
										+		
Depth to Base		·				•						
(DTB)			(DTB)			D			D.:		Lass	
Contract Name: North London Business Park Data Collected By: AM							ss Park				AM	
Project Manager / Engineer: AK/AM Checked:	R	Project Man			AK	K/AM			Checke	d:		
Contract Ref: 1921321 Page number: 4			f:	1921321				Page nu	ımber:	4		
TPF210 Issue 6			-		TDE210 les	6						

Monitoring Date:	28/09/2020	Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Pre-Testing Remark	<u> </u>	100702710	Air Temperatur	e:		<u>02 (11).</u> 17		Device:		GFM	
			°C Weather:			SUNN	/	Sorial N	lumber:	10941	
			Ground Condit	ions:		DRY		Daily C		10341	
				LIGHT / MED	JUM /		G	Daily O	icon.		
								LIGHT			
			Tidal State: (if a	applicable) High	ı / Low	/ Rising /	Falling				
Exploratory Position	ID:	BH5	Monitoring Rou	ınd Number:	2			Test Nu	ımber:	1	
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) S	hallow 2)	1					nm/ 40mm / 50mm	/ 40
Time of	T		Deep	1		Gas tap).	Other (-		
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		SINGLE DOUBL	/	552.	-		
Time Start (hh:mm)	12:16	12:17	1008		Obse	rvations (e.g. on-site	activities):			
Time End (hh:mm)	12:17	12:22									
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	O	xygen	Cart		Hydrogen	LEL	PID
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(9	%/vol)	mono (pp		sulphide (ppm)	(%)	(ppm)
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)			,	,	(11	,	(11 /	()	(11 /
5	0.0	0	0.0	0.0		21.1				0.0	
10	0.0	15	0.0	4.8		20.4				0.0	
15	0.0	30	0.0	4.9		18,0				0.0	
20	0.0	60	0.0	5.1		17.4				0.0	
25	0.0	90	0.0	5.1		16.8				0.0	
30	0.0	120	0.0	5.1		16.5				0.0	
40	0.0	180	0.0	5.1		16.2				0.0	
50	0.0	240	0.0	5.1		16.0				0.0	
60	0.0	300	0.0	5.1		16.0				0.0	
Stage 1 gas flow -	0.0		Note: Flow sho	ould be recorde	d at 5 s	second in	tervals u _l	p to 30 s	econds, 10	second intervals to	o 2 minutes
Peak (I/h)										obtained. Typically	
Stage 1 gas flow - Steady State (I/h)	0.0		recorded during		onas t	o a minute	e. The all	rerentiai	pressure re	eading (in Pa) shou	iid aiso be
STAGE 3	Depth (from date	um) to water		Time:				LNAPL	Top (from c	datum) (m):	
WATER LEVEL OBSERVATION	(DTW): Depth (from date	(m)		Durgo Stort				DNADI	Ton (from a	datum) (m):	
OBOLIVATION	base (DTB): (m			Purge Start	<u>.</u>			DNAPL	TOP (HOIH C	datum) (m):	
	Hole Purged: Ye	es / No		Purge End:				Water 0	<u>Observation</u>	<u>s:</u>	
	Purge Volume: (Itrs)		Post-Purge (DTW) (m)	<u>-</u>						
		T (0	(TO 6)	Post testin	ng	Samples	Taken:	Yes	/ <u>No</u>		
		Top of CoverGround Leve	. ,	remarks	<u>::</u>	Sample	Media: G	as/Wate	er_		
		– Ground Leve [–] Top of Pipew				Gas Car	nister St	art (mb)			
		•				Gas Car	nnister Er	nd (mb)			
						Gas Car	nnister Di	uration (mins)		
		- Depth to					pth	Sam	ple Ref	Type (EW / G)	Container
		Water (DTW)				(from o	datum)			7)[- (
	Depth to Base (DTB)										
		Contract Name:			Busine	ess Park		Data Co	ollected By:	AM	
	CV	Project Man	ager / Engineer:	I : Ak	K/AM			Checke	d:		
Contract Re				1921321				Page n	umber:	5	
				TPF210 Iss	sue 6						

Monitoring Date:		Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Pre-Testing Remark		100702710	Air Temperatur	e:		<u>02 (11).</u> 17		Device:		GFM	
			°C Weather:			SUNN	/	Serial N	umber:	10941	
			Ground Condit	ione:		DRY		Daily Cl		10941	
				LIGHT / MED	JIUM /		G	Daily Ci	ieck.		
			TYTIC. INDINE	LIGITI 7 MILL	3101 1 11 7	CITTOIT	·	LIGHT			
			Tidal State: (if a	applicable) High	ı / Low	/ Rising /	Falling				
	.=				1_						
Exploratory Position	<u>ID:</u>	BH6	Monitoring Rou	ınd Number:	2			Test Nu	mber:	1	
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI	hallow 2)	1			Pipe Dia	ameter: 19n	nm/ 40mm / 50mm	/ 40
			Deep	1				Other (-		
Time of Monitoring			A 4	Differential		Gas tap SINGLE	<u>)</u> :	SINGLE			
(hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Pressure (mb)		DOUBL					
,				, ,							
Time Start (hh:mm)	11:40	11:41	1008		Obse	rvations (e.g. on-site	activities):			
Time End (hh:mm)	11:41	11:46									
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	0:	xygen	Carl		Hydrogen	LEL	PID
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%	%/vol)	mond (pp		sulphide (ppm)	(%)	(ppm)
Time of <u>flow</u> monitoring	Flow Reading (I/hr)	Time of gas monitoring (sec)	, , , ,	(,	()	,	(1-10	,	(11)	(',	(i i · · /
(sec) 5	0.0	0	0.0	0.0		21.1				0.0	
10	0.0	15	0.0	1.3		21.0				0.0	
							-				
15	0.0	30	0.0	1.4		20.6				0.0	
20	0.0	60	0.0	1.4		20.2				0.0	
25	0.0	90	0.0	1.4	<u> </u>	20.1				0.0	
30	0.0	120	0.0	1.4	:	20.1				0.0	
40	0.0	180	0.0	1.4	:	20.1				0.0	
50	0.0	240	0.0	1.4		20.0				0.0	
60	0.0	300	0.0	1.4		20.0				0.0	
Stage 1 gas flow - Peak (I/h)	0.0									second intervals to obtained. Typically	
` '	0.0									eading (in Pa) shou	
Steady State (I/h)			recorded during	g this period.							
STAGE 3	Depth (from datu		DRY	Time:				LNAPL	Top (from d	datum) (m):	
WATER LEVEL OBSERVATION	(DTW): Depth (from datu	(m)	4.97	Purge Start	·-			ΠΝΔΡΙ	Ton (from (datum) (m):	
	base (DTB): (m)		4.57	r dige otari				DIVALL	TOP (HOIII C	datum (m).	
	Hole Purged: Ye	es / No		Purge End:				Water C	Observation	<u>s:</u>	
	Purge Volume: (I	trs)		Post-Purge	!						
				(DTW) (m) Post testir	na	Samples	Taken:	Yes	/ No		
		Top of Cover	` '	remarks		Sample					
		Ground Leve					nister St				
		Top of Pipew	ork (TOP)								
							nnister Er				
							nnister D	uration (mins)		
		Depth to				De (from o	pth datum)	Sam	ple Ref	Type (EW / G)	Container
		Water (DTW)				,,, 51111					
	Depth to Base										
		Contract Na	mo:	North London	Busi-	oe Barli		Doto C	allocted Dec	LANA	
					ss Park			ollected By:	AM		
R	SK	Project Man	ager / Engineer:	Ak	<td></td> <td></td> <td>Checke</td> <td>d:</td> <td></td> <td></td>			Checke	d:		
	f:	1921321				Page n	ımber:	6			
				TPF210 iss	SIIP 6						
				11 1 2 10 155	.uc U						

Part Part	Monitoring Date:	28/09/2020	Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Metallicing		<u>S:</u>	100701710		re:				Device:		GFM	
Count Considerate Dev							CHIMININ	/	Carial N	lumbor	10041	
Viter Note Light MeDium STRONG Light Low Falling Falling Low Falling Fal				-	ione:						10941	
Description Description						l IIIM /		G	Daily C	HECK.		
Exploration December Decemb				Willia. HONE 7	LIGITI / IMEL	7	o into it		LIGHT			
Install Type: SINGLE / DOUBLE SINGLE Deep Single Flow readings Gas readings Continues				Tidal State: (if a	applicable) High	/ Low	/ Rising /	Falling				
Deep	Exploratory Position	ID:	ВН7	Monitoring Rou	ınd Number:	2			Test Nu	<u>ımber:</u>	1	
Monitoring Flow rendrings Cas readings Amospheric Deferential Pressure (mb) Description Descriptio	Install Type: SINGL	E / DOUBLE	SINGLE		hallow 2)	1					nm/ 40mm / 50mm	40
Tree End (ph.mm) 12:06 12:12	Monitoring	Flow readings	Gas readings				SINGLE	/	SINGLI			•
Stage 1 Flow Readings Readi	Time Start (hh:mm)	12:06	12:07	1008		Obser	vations (e	e.g. on-site	activities)			
Readings Readings Monitoring: (%/vol) Dioxide (%/vol) (%/vol) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (%) (ppm) (ppm) (%) (ppm) (ppm) (%) (ppm)	Time End (hh:mm)	12:06	12:12									
Time of gas montoring Flow Relating (RP) Time of gast						Ox	ygen					PID
Stage 1 gas flow- Note: Flow should be recorded at 5 second intervals up to 30 seconds. 10 second intervals to 2 minutes and 30 second intervals up to 30 seconds to a minute. The differential pressure reading (in Pa) should also be steedy state (in) Stage 1 gas flow- Depth (from datum) to wester (DTW) Depth from datum) to wester (DTW) Depth from datum (in well- hase (DTB); (in) Hole Purged: Ves / No Purge Start: Devaluation De		Flow Reading (I/hr)		(%/vol)	(%/vol)	(%	o/vol)	(pp	m)	(ppm)	(%)	(ppm)
15		0.0		0.0	0.0	2	21.0				0.0	
20	10	0.0	15	0.0	0.4	1	7.3				0.0	
25 0.0 90 0.0 0.4 14.5 0.0 0.0 4.4 14.5 0.0 0.0 4.4 14.5 0.0 0.0 180 0.0 0.4 14.5 0.0 0.0 180 0.0 0.4 14.5 0.0 0.0 0.0 0.4 14.5 0.0 0.0 0.0 0.4 14.5 0.0 0.0 0.0 0.0 0.0 0.4 14.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	15	0.0	30	0.0	0.4	1	6.0				0.0	
30 0.0 120 0.0 0.4 14.5 0.0 0.0 180 0.0 0.4 14.5 0.0 0.0 180 0.0 0.4 14.5 0.0 0.0 180 0.0 0.4 14.5 0.0 0.0 14.5 0.0 0.0 14.5 0.0	20	0.0	60	0.0	0.4	1	5.2				0.0	
40 0.0 180 0.0 0.4 14.5 0.0 0.0	25	0.0	90	0.0	0.4	1	4.6				0.0	
Stage 1 gas flow			120	0.0							0.0	
Stage 1 gas flow - Peak (tift) Stage 1 gas flow - Peak (tift) Stage 1 gas flow - Peak (tift) Stage 1 gas flow - Stage 1 gas flow - Stage 1 gas flow - Conditions occur within 30 seconds thervals up to 30 seconds, 10 second intervals to 2 minutes and 30 second intervals up to 30 seconds occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period during this period during this period during this period during this period. STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (DTW) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (from datum) to well base (DTB): (m) Depth (Top of Pipework (TOP) Depth to Water (DTW) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth to Base (DTB): (m) Depth (Tron datum) (m): (m): (m): (m): (m): (m): (m): (m	40	0.0	180	0.0	0.4	1	4.5				0.0	
Stage 1 gas flow- Peak (I/h) Stage 1 gas flow-				0.0								
Peak (I/h) Stage 1 gas flow - Stage 1 gas flow - Conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (IDTW): (m) Depth (from datum) to well base (IDTB); (m) Hole Purged: Yes / No Purge Volume: (IIIs) Post-Purge (IDTW): (IIIs) Post-Purge (IDTW): (IIIs) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister End (Imb) Gas Cannister End (Imb) Gas Cannister Duration (Imins) Depth to Water (DTW) Depth to Base (IDTB): (IIIs) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:	60	0.0	300	0.0	0.4	1	4.5				0.0	
Peak (I/h) Stage 1 gas flow - Stage 1 gas flow - Conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (IDTW): (m) Depth (from datum) to well base (IDTB); (m) Hole Purged: Yes / No Purge Volume: (IIIs) Post-Purge (IDTW): (IIIs) Post-Purge (IDTW): (IIIs) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister End (Imb) Gas Cannister End (Imb) Gas Cannister Duration (Imins) Depth to Water (DTW) Depth to Base (IDTB): (IIIs) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:												
Peak (I/h) Stage 1 gas flow - Stage 1 gas flow - Conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (IDTW): (m) Depth (from datum) to well base (IDTB); (m) Hole Purged: Yes / No Purge Volume: (IIIs) Post-Purge (IDTW): (IIIs) Post-Purge (IDTW): (IIIs) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister End (Imb) Gas Cannister End (Imb) Gas Cannister Duration (Imins) Depth to Water (DTW) Depth to Base (IDTB): (IIIs) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:												
Peak (I/h) Stage 1 gas flow - Stage 1 gas flow - Conditions occur within 30 seconds to a minutes or until steady-state readings are obtained. Typically, steady state conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (IDTW): (m) Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge Start: DNAPL Top (from datum) (m): Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge Volume: (Itrs) Post-Purge (IDTW) (m) Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister End (mb) Gas Cannister End (mb) Gas Cannister Duration (mins) Depth to Water (DTW) Depth to Base (DTB) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:												
Peak (I/h) Stage 1 gas flow - Stage 1 gas flow - Conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (IDTW): (m) Depth (from datum) to well base (IDTB); (m) Hole Purged: Yes / No Purge Volume: (IIIs) Post-Purge (IDTW): (IIIs) Post-Purge (IDTW): (IIIs) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister End (Imb) Gas Cannister End (Imb) Gas Cannister Duration (Imins) Depth to Water (DTW) Depth to Base (IDTB): (IIIs) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:												
Peak (I/h) Stage 1 gas flow - Stage 1 gas flow - Conditions occur within 30 seconds to a minutes or until steady-state readings are obtained. Typically, steady state conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (IDTW): (m) Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge Start: DNAPL Top (from datum) (m): Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge Volume: (Itrs) Post-Purge (IDTW) (m) Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister End (mb) Gas Cannister End (mb) Gas Cannister Duration (mins) Depth to Water (DTW) Depth to Base (DTB) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:												
Stage 1 gas flow- Steady State (I/h) STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (DTW): (m) Depth (from datum) to well base (DTB); (m) Hole Purged: Yes / No Purge Volume: (Ire) Top of Pipework (TOP) Depth to Water (DTW) Contract Name: Project Manager / Engineer: Conditions occur within 30 seconds to a minute. The differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded during this period. In the differential pressure reading (in Pa) should also be recorded and the period. In the differential pressure reading (in the period. In the differential pressure reading (in the period. In the differential pressure reading (in the period. In the differential pressure reading (in the period. In the differential pressure reading (in the period. In the differential pressure reading (in the period. In the differential pressure reading (in the period. In the differential pressure reading (in the period. In the differential pressure												
STAGE 3 WATER LEVEL OBSERVATION Depth (from datum) to water (DTW): (m) Depth (from datum) to well base (DTB): (m) Hole Purged: (PTS): (m) Hole Purged: (PTS): (PTS) Hole Purged: (PTS): (PTS) Hole Purged: (PTS):	* *			conditions occu	ur within 30 sec							
WATER LEVEL OBSERVATION Depth (from datum) to well base (DTB): (m) Hole Purged: Yes / No Purge End: Water Observations: Purge Volume: (itrs) Post-Purge (DTW) (m) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister Start (mb) Gas Cannister End (mb) Gas Cannister Duration (mins) Depth (from datum) to well Depth (from datum) to well Depth to Base (DTB): (m) Depth to Base Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:		D 11 /6 1 /								T //		
Depth to Water (DTW) Depth to Base (DTW) Depth to Base (DTW) Depth to Base (DTW) Depth to Base (DTW) Depth to Base (DTW) Data Collected By: AM Data Collected By: AM Project Manager / Engineer: AK/AM Checked:				DRY	<u>lime</u> :				LNAPL	Top (from d	latum) (m):	
Hole Purged: Yes / No Purge Volume: (trs) Post-Purge (DTW) (m) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister Start (mb) Gas Cannister Duration (mins) Depth to Water (DTW) Depth to Base (DTB) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Name AK/AM Water Observations: Samples Taken: Yes / No Sample Media: Gas/Water Gas Cannister Start (mb) Gas Cannister Duration (mins) Depth (from datum) Depth (from datum) Sample Ref Type (EW / G) Container AK/AM Checked:	OBSERVATION			4.97	Purge Start	:			DNAPL	. Top (from o	datum) (m):	
Purge Volume: (Itrs) Post-Purge (DTW) (m)					Purge End:				Water (<u>Observation</u> :	<u>s:</u>	
CDTW) (m) Post testing remarks: Samples Taken: Yes / No Sample Media: Gas/Water				<u> </u>	Post-Purge							
Top of Cover (TOC) Ground Level (GL) Top of Pipework (TOP) Gas Cannister Start (mb) Gas Cannister End (mb) Gas Cannister Duration (mins) Depth (from datum) Depth to Base (DTB) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:					(DTW) (m)		Samples	Takan	Vec	/ No		
Gas Cannister Start (mb) Gas Cannister End (mb) Gas Cannister Duration (mins) Depth to Water (DTW) Depth to Base (DTB) Contract Name: North London Business Park Project Manager / Engineer: AK/AM Checked:			•	` '						_		
Depth to Water (DTW) Depth to Base (DTB) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:				, ,								
Depth to Water (DTW) Depth to Base (DTB) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:			iop of Pipew	OIK (IOP)								
Depth to Water (DTW) Depth to Base (DTB) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:												
Depth to Base (DTB) Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:			- Denth to							-	Type (EM / C)	Container
Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:			•					•	Sam	hie VGI	ype (EVV / G)	Container
Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:												
Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:												
Contract Name: North London Business Park Data Collected By: AM Project Manager / Engineer: AK/AM Checked:			•	e		ļ						
Project Manager / Engineer: AK/AM Checked:				me:	North London	Busine	ss Park		Data C	ollected Bv:	AM	
Contract Net. 1921321 Page number: /			,			W/ 11VI					17	
			Contract Re	1.					rage n	umper:		
TPF210 Issue 6					TPF210 Iss	ue 6						

	28/09/2020	Measurement of	datum:	TOC	Offset to							
<u>Date:</u> Pre-Testing Remark		TOC / GL / TO	P / Other <u>Air Temperatur</u>	.o.	<u> [</u>	<u>GL (m):</u> 117		Device		GFM		
Fie-resulig Kelliark	<u>5.</u>		°C	<u>.</u> G.		117		Device	=	GFW		
			<u>Weathe</u> r:			SUNNY	1	Serial N	Number:	10941		
			Ground Condit	ions:		DRY		Daily C	heck:			
			Wind: NONE /	LIGHT / MED	DIUM / :	STRON	G	LIGHT				
			Tidal State: (if a	applicable) High	n / Low /	Rising /	Falling					
Exploratory Position	ID:	ВН8	Monitoring Rou	_	2			Test No	umber:	1		
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	hallow 2)	1			Pipe Di Other	<u>ameter:</u> 19n (mm)	nm/ 40m	ım / 50m	m / 40
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)	S	Gas tap INGLE DOUBL	/	SINGL	E			
Time Start (hh:mm)	11:54	11:55	1008		Observ	ations (e.g. on-site	activities).				
Time End (hh:mm)	11:55	12:00										
Stage 1 Flow Readings	Stage 1 Flow Readings	Stage 2 Gas Monitoring:	Methane (%/vol)	Carbon Dioxide (%/vol)		/gen /vol)	Carb mono (pp	xide	Hydrogen sulphide (ppm)		LEL (%)	PID (ppm)
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)										
5	0.0	0	0.0	0.0		1.2					0.0	
10 15	0.0	15 30	0.0	9.0 9.1		7.4 5.2					0.0	
20	0.0	60	0.0	9.1		2.5					0.0	
25	0.0	90	0.0	9.3		2.0				-	0.0	
30	0.0	120	0.0	9.3	11	1.6					0.0	
40	40 0.0 180			9.4	11	1.3					0.0	
50	0.0	240	0.0	9.4	11.2						0.0	
60				9.4	11	1.2					0.0	
Peak (I/h)	0.0		and 30 second	ould be recorded intervals up to	3 minute	es or un	til steady	-state re	eadings are	obtained	l. Typical	ly, steady state
Stage 1 gas flow - Steady State (I/h)	0.0		recorded during	ur within 30 sec g this period.	onds to	a minute	e. The dif	ferentia	l pressure re	eading (ii	n Pa) sho	ould also be
STAGE 3 WATER LEVEL	Depth (from date (DTW):	um) to water (m)	DRY	Time:				LNAPL	Top (from d	latum) (r	<u>n):</u>	
OBSERVATION	Depth (from date base (DTB): (m	um) to well	4.91	Purge Start	<u>:</u>			DNAPL	Top (from o	datum) (ı	<u>m):</u>	
	Hole Purged: Yo			Purge End:				Water 0	Observation	<u>s:</u>		
	Purge Volume: (Itrs)		Post-Purge (DTW) (m)								
		- Top of Cover	(TOC)	Post testir	ng S	Samples	Taken:	Yes	/ <u>No</u>			
		- Ground Leve		remarks	3		Media: G					
		[–] Top of Pipew	ork (TOP)				nnister St)			
					Į.		nister Er		mine)			
	Depth to Water (DTV				-		nnister Du pth			T) /m = /=	:\\\	Contain
							datum)	Sam	ple Ref	Type (E	.vv / G)	Container
					<u> </u>							
	Depth to Base											
		e		+								
		Contract Na	me:	North London	Busines	s Park		Data C	ollected By:		AM	
R	SK	Project Man	ager / Engineer:	: AK	K/AM			Checke	ed:			
Contract Re			f:	1921321				Page n	umber:		8	
				TPF210 Iss	sue 6						•	

Monitoring Date:	09/10/2020	Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Pre-Testing Remark	<u>S:</u>	100702710	Air Temperatur	e:		15		Device:		GA5000	
			°C Weather:			OVERCA	СТ	Sorial N	lumber:		
			Ground Conditi	one:		DRY	01	Daily Cl			
			Wind: NONE /		I DIUM /		G	Daily Cl	100A.		
			VVIII TO THE T	LIGITI 7 IVILL	JIOIVI 7	OTTON		LIGHT			
			Tidal State: (if a	applicable) High	ı / Low /	Rising /	Falling				
Exploratory Position	ID:	BH1	Monitoring Rou	nd Number:	3			Test Nu	ımber:	1	
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	nallow 2)	1			Pipe Dia Other (nm/ 40mm / 50mm	/ 40
Time of			реер			Gas tap	·	SINGLE			
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		SINGLE DOUBL	/				
Time Start (hh:mm)	09:45	09:46	1015	4.29	Obser	vations (e.g. on-site	activities):			
Time End (hh:mm)	09:46	09:51									
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Ox	ygen	Cark	oon	Hydrogen	ı LEL	PID
Readings	Readings	Monitoring:	(0/ //)	Dioxide	/0/	/val)	mono		sulphide	(0/)	(0000)
Time of flow monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	(%/vol)	(%/vol)	(%)	/vol)	(pp	111)	(ppm)	(%)	(ppm)
5	0.0	0	0.0	0.1	2	0.9					
10	0.0	15	0.0	3.5	1	8.6					
15	0.0	30	0.0	3.5	1	7.3					
20	0.0	60	0.0	3.5	1	7.2					
25	0.0	90	0.0	3.5		7.1					
30	0.0	120	0.0	3.5		7.1					
40	0.0	180	0.0	3.5	1	7.1					
50	0.0	240	0.0	3.5		7.1					
60	60 0.0 300			3.5	1	7.1					
Stage 1 gas flow -	0.0									second intervals t	
Peak (I/h) Stage 1 gas flow -	0.0									obtained. Typically eading (in Pa) shοι	
Steady State (I/h)	0.0		recorded during						p. 000 a. 0	g (: a) ee	
STAGE 3	Depth (from date		4.2	Time:				LNAPL	Top (from d	datum) (m):	
WATER LEVEL OBSERVATION	(DTW): Depth (from date	(m) um) to well	4.93	Purge Start	:			DNAPL	Top (from o	datum) (m):	
	base (DTB): (m)		-							
	Hole Purged: Ye			Purge End:				vvater (Observations	<u>S:</u>	
	Purge Volume: (itrs)		Post-Purge (DTW) (m)							
		- Top of Cover	(TOC)	Post testir remarks		Samples	Taken:	Yes	/ <u>No</u>		
		- Ground Leve	` '	lemants	<u>-</u>	Sample	Media: G	as/Wate	er		
7-7-1		[–] Top of Pipew				Gas Car	nnister St	art (mb)			
					Î	Gas Car	nnister Er	nd (mb)			
					Î	Gas Car		uration (mins)		
		Depth to				De (from c	pth datum)	Sam	ple Ref	Type (EW / G)	Container
	Water (DTW)			ļ							
					ł						
		Depth to Base									
		·· (DTB)									
		Contract Na	me:	Noth London E	Busines	s Park		Data Co	ollected By:	AM	
R	Project Manage			AK	K/AM			Checke	d:		
	f:	1921321				Page n	umber:	1			
				TPF210 Iss	sue 6						

Monitoring Date:	09/10/2020	Measurement of TOC / GL / TO		TOC	Offset to GL (m):						
Pre-Testing Remark	<u>S:</u>	100702710	Air Temperatur	e:	<u> </u>	14		Device		GA5000	
			°C Weather:			VERCA	СТ	Sorial N	lumber:		
			Ground Conditi	ons:		DRY	31	Daily C			
			Wind: NONE /		JILIM / :		G	Daily C	ileuk.		
			TYTIC. ITOILE 7	LIGITI 7 IVILLE	310III 7	0111011		NONE			
			Tidal State: (if a	applicable) High	n / Low /	Rising /	Falling				
Exploratory Position		BH2	Monitoring Rou	nd Number:	3			Test Nu	<u>ımber:</u>	1	
Install Type: SINGL	.E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	nallow 2)	1			Pipe Di Other		nm/ 40mm / 50mm	40
Time of	I		2004			Gas tap):	SINGL			
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		INGLE DOUBLI					
Time Start (hh:mm)	09:35	09:36	1015	0.1	Observ	ations (e	e.g. on-site	activities):			
Time End (hh:mm)	09:36	09:41									
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Oxy	/gen	Cart		Hydrogen	LEL	PID
Readings	Readings	Monitoring:	(%/vol)	Dioxide	(0/	(vol)	mono		sulphide	(0/.)	(nnm)
Time of flow monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	(70/ VOI)	(%/vol)	(%)	/vol)	(pp	111 <i>)</i>	(ppm)	(%)	(ppm)
5	0.0	0	0.0	0.1	2	1.0	0		0		
10	0.0	15	0.0	6.1	17	7.3	1		0		
15	0.0	30	0.0	6.2	13	3.2	1		0		
20	0.0	60	0.0	6.3	12	2.7	0		0		
25	0.0	90	0.0	6.2		2.6	0		0		
30	0.0	120	0.0	6.3		2.6	0		0		
40	0.0	180	0.0	6.3		2.6	0		0		
50	0.0	240	0.0	6.3		2.6	0		0		
60	60 0.0 300			6.3	12	2.6	0		0		
Stage 1 gas flow -	0.0									second intervals t	
Peak (I/h)	0.0									obtained. Typically eading (in Pa) shοι	
Stage 1 gas flow - Steady State (I/h)	0.0		recorded during		onus to	a IIIIIule	e. The un	ierentia	i pressure re	ading (in Fa) shot	iiu aiso be
STAGE 3	Depth (from date		4.83	Time:				LNAPL	Top (from d	latum) (m):	
WATER LEVEL OBSERVATION	(DTW): Depth (from date	(m) um) to well	4.98	Purge Start	t:			DNAPL	. Top (from o	datum) (m):	
	base (DTB): (m)		_							
	Hole Purged: Ye			Purge End:				<u>water (</u>	Observation:	<u>S:</u>	
	Purge Volume: (ltrs)		Post-Purge (DTW) (m)	<u>!</u>						
		- Top of Cover	(TOC)	Post testir remarks		Samples	Taken:	Yes	/ <u>No</u>		
		- Ground Leve	` '	lemants	<u>. </u>	Sample I	Media: G	ias/Wat	er		
7-7-1		[–] Top of Pipew			(Gas Car	nnister St	art (mb)			
					<u>(</u>	Gas Car	nnister Er	nd (mb)			
					9	Gas Car	nister Di	uration (mins)		
		Depth to			ľ	Dep (from d		Sam	ple Ref	Type (EW / G)	Container
	Water (DTW)	Water (DTW)				,,,o,iii C					
				Į							
	Depth to Base (DTB)				F						
					t						
		Contract Na	me:	North London	Busines	s Park		Data C	ollected By:	AM	
	SK	ager / Engineer:	Ak	K/AM			Checke	ed:			
	f:	1921321				Page n	umber:	2			
				TPF210 iss	sue 6						
				210 133							

Monitoring Date:		Measurement of TOC / GL / TO		TOC		Offset to GL (m):						
Pre-Testing Remark		1007 017 10	Air Temperatur	re:	<u> </u>	<u>3L (III).</u> 15		Device		GA5000		
			°C Weather:			VERCA	CT.	Carial	lumb or			
			Ground Condit	ions:	0	DRY	S1	Daily C	Number:			
				LIGHT / MED	DILIM /		G	Daily C	HECK.			
			TYMIG. INDINE	LIGITI / IMEL	310III 7	onton		NONE				
			Tidal State: (if a	applicable) High	n / Low /	Rising /	Falling					
Exploratory Position		ВН3	Monitoring Rou	_	3			Test No		1		
Install Type: SINGL	.E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	hallow 2)	1			Pipe Diameter: 19mm/ 40mm / 50mm / 40 Other (mm)				
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)	S	Gas tap: SINGLE / DOUBLE		SINGL				
Time Start (hh:mm)	09:25	09:26	1015	26.19	Observ	vations (e	e.g. on-site	activities)				
Time End (hh:mm)	09:26	09:31										
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Oxy	ygen	Cark	oon	Hydrogen	LEL	PID	
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%)	/vol)	mono (pp		sulphide (ppm)	(%)	(ppm)	
Time of flow monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	(70,701)	(70/101)	(70)	(pp		,	(PPIII)	(70)	(PPIII)	
5	0.0	0	0.0	0.0	20	20.6)	0			
10	0.0	15	0.0	1.2	19	9.8	2	!	0			
15	0.0	30	0.0	1.2		8.3	1		0			
20	0.0	60	0.0	1.2		8.2	1		0			
25	0.0	90	0.0	1.2		8.2	1		0			
30	0.0	120	0.0	1.2		18.2 1			0			
40	0.0	180	0.0	1.2		18.2 1 18.2 1			0			
50 60	0.0	240 300	0.0	1.2 1.2		8.2 8.2	1		0			
Stage 1 gas flow -	0.0		Note: Flow sho	uld he recorde	d at 5 se	econd in	tervals u	n to 30 s	seconds 10	second intervals t	n 2 minutes	
Peak (I/h)			and 30 second	intervals up to	3 minute	es or un	til steady	-state re	eadings are	obtained. Typically	, steady state	
Stage 1 gas flow - Steady State (I/h)	0.0		conditions occurecorded during		onds to	a minute	e. The dif	ferentia	l pressure re	eading (in Pa) shou	ıld also be	
STAGE 3	Depth (from datu		0.8	Time:				LNAPL	Top (from d	datum) (m):		
WATER LEVEL OBSERVATION	(DTW): Depth (from datu	(m)	4.93	Purge Start	·•			DNAPI	. Top (from o	datum) (m):		
	base (DTB): (m)		-								
	Hole Purged: Ye			Purge End:				water	<u>Observation</u>	<u>S:</u>		
	Purge Volume: (I	ltrs)		Post-Purge (DTW) (m)	<u></u>							
		- Top of Cover	(TOC)	Post testir remarks			Taken:		/ <u>No</u>			
		– Ground Leve	. ,	Tomans	<u>`</u>		Media: G		-			
		[–] Top of Pipew	ork (TOP)				nnister St		-			
							nnister Er					
					<u> </u>		nnister Du	uration (
		 Depth to Water (DTW) 				De _l (from c		Sam	ple Ref	Type (EW / G)	Container	
		ζ= · · · /										
					+							
		Depth to Bas	e		<u> </u>							
		Contract Na	me·	North London	Rusines	s Park		Data C	ollected By:	IAM		
				o i aik				Aivi				
R	SK	-	ager / Engineer:		K/AM			Checke				
		Contract Re	I.	1921321				Page n	umper:	3		
				TPF210 Iss	sue 6							

Monitoring Date:		Measurement of TOC / GL / TO		TOC		Offset to GL (m):						
Pre-Testing Remark		100702710	Air Temperatur	e:	T	13		Device	<u> </u>	GA5000		
			°C Weather:			CLEAR)	Sorial N	Number:			
			Ground Condit	ione:		DRY		Daily C				
				LIGHT / MED	JUJM /		G	Daily C	HOUN.			
			VIIII INONE	LIOITI 7 MILL	JIOIVI 7	Onton		NONE				
			Tidal State: (if a	applicable) High	n / Low /	Rising /	Falling					
Exploratory Position	ID:	BH4	Monitoring Rou	ınd Number:	3			Test Nu	umber:	1		
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	hallow 2)	1			Pipe Diameter: 19mm/ 40mm / 50mm / 40 Other (mm)				
Time of			2004		Gas tap:			SINGL				
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		SINGLE / DOUBLE						
Time Start (hh:mm)	09:16	09:17	1014	5.68	Observ	vations (e	e.g. on-site	activities):				
Time End (hh:mm)	09:17	09:22										
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Ox	ygen	Cart	oon	Hydrogen		PID	
Readings	Readings	Monitoring:	(%/vol)	Dioxide	/0/	/vol)	mono (pp		sulphide		(nnm)	
Time of flow monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	(707 VOI)	(%/vol)	(%	(μρι		111)	(ppm)	(%)	(ppm)	
5	0.0	0	0.0	0.0	2	21.1)	0			
10	0.0	15	0.0	5.2	1	8.1	0)	0			
15	0.0	30	0.0	4.3	1:	2.6	1		0			
20	0.0	60	0.0	5.4	1	0.3	0)	0			
25	0.0	90	0.0	5.3	1	0.1	0)	0			
30	0.0	120	0.0	5.3	1	10.1 0		0 0				
40	0.0	180	0.0	5.3	1	10.1 0)	0			
50	0.0	240	0.0	5.3	1	0.1	0)	0			
60	0.0	300	0.0	5.3	1	0.1	0)	0			
Stage 1 gas flow -	0.0		Note: Flow sho	uld be recorde	d at 5 se	econd in	tervals ui	p to 30 s	seconds, 10	second intervals t	o 2 minutes	
Peak (I/h)			and 30 second	intervals up to	3 minut	es or un	til steady	-state re	eadings are	obtained. Typically	, steady state	
Stage 1 gas flow - Steady State (I/h)	0.0		conditions occurecorded during		onds to	a minute	e. The dif	ferentia	l pressure re	eading (in Pa) sho	uld also be	
STAGE 3	Depth (from datu	um) to water	DRY	Time:				LNAPL	Top (from c	datum) (m):		
WATER LEVEL OBSERVATION	(DTW): Depth (from datu	(m)	4.83	Duras Ctart				DNIADI	Ton /fram	datum \ (m)		
02021117111011	base (DTB): (m)		4.03	Purge Start	<u>-</u>			DINAPL	. Top (IIoIII d	datum) (m):		
	Hole Purged: Ye	es / No		Purge End:				Water 0	Observation	<u>s:</u>		
	Purge Volume: (I	ltrs)		Post-Purge	<u>L</u>							
				(DTW) (m) Post testir	ng_	Samples	Taken:	Yes	/ <u>No</u>			
		Top of Cover	` '	<u>remarks</u>		Sample	Media: G	as/Wat	<u>er</u>			
		– Ground Leve [–] Top of Pipew					nister St					
			(. = . /		ļ.	Gas Car	nnister Er	nd (mb)				
					Į.	Gas Car						
		- Depth to			ŀ	De	pth		ple Ref	Type (EW / G)	Container	
		Water (DTW)			ŀ	(from c	atum)	2411		,, (=, 0)		
					Ţ							
					Ţ							
		Depth to Bas (DTB)	e		}							
		Contract Na	me:	North London	Busines	ss Park		Data C	ollected By:	AM		
		Project Manager / Engineer: A						Checke	ed:			
		Contract Re		1921321				Page n	umber [.]	4		
		231111401110						. 490 11		•		
				TPF210 Iss	sue 6							

<u>Monitoring</u> <u>Date:</u>		TOC / GL / TO		100		GL (m):						
Pre-Testing Remark	<u>s:</u>		Air Temperatur	e:		15		Device	<u>:</u>	GA500	00	
			°C Weather:			CLEAR	}	Serial I	Number:			
			Ground Conditi	ions:			-	Daily C				
				LIGHT / MED	I IUM /	STRON	G					
								NONE				
			Tidal State: (if a	applicable) High	/ Low	/ Rising /	Falling					
Exploratory Position	ID:	BH5	Monitoring Rou	ind Number:	3	3		Test Number:				
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI	hallow 2)	1			Pipe Diameter: 19mm/ 4			m / 50m	m / 40
			Deep	1				Other (mm)				
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)	SINGLE /			SINGLE				
Time Start (hh:mm)			1015	6.18	Obser	rvations (e	e.g. on-site	activities)				
Time End (hh:mm)												
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	Ox	kygen	Carl	bon	Hydroge	n	LEL	PID
Readings	Readings	Monitoring:		Dioxide			mond		sulphide			
Time of <u>flow</u> monitoring		Time of gas	(%/vol)	(%/vol)	(%	%/vol)	(pp	om) (ppm			(%)	(ppm)
(sec)	Flow Reading (I/hr)	monitoring (sec)										
5	0.0	0	0.0	0.2		20.7	C)	0			
10	0.0	15	0.0	4.8		16.9	1		0			
15	0.0	30	0.0	4.8	·	11.2	C)	0	\neg		
20	0.0	60	0.0	4.9	<u> </u>	10.6	C)	0	\dashv		
25	0.0	90	0.0	4.9	ļ .	10.6	C)	0			
30	0.0	120	0.0	4.9	,	10.5	C)	0			+
40	0.0	180	0.0	4.9		10.5	C		0			
50	0.0	240	0.0	4.9		10.5	С		0			
60	0.0	300	0.0	4.9	Í	10.5	C)	0			
Stage 1 gas flow -	0.0		Note: Flow sho	uld be recorded	d at 5 s	second int	tervals II	n to 30	seconds 1) second	intervals	to 2 minutes
Peak (I/h)	0.0		and 30 second					•				
	0.0			ur within 30 seco	onds to	a minute	e. The dif	fferentia	l pressure r	eading (ir	Pa) sh	ould also be
Steady State (I/h)	Danath /franc date		recorded during	<u> </u>		T		LINADI	Tau /fua	-1-4	- \-	
STAGE 3 WATER LEVEL	Depth (from datu (DTW):	(m)	1.81	<u>Time</u> :				LINAPL	. Top (from	uatum) (n	<u>1).</u>	
OBSERVATION	Depth (from datubase (DTB): (m)		4.95	Purge Start				DNAPI	Top (from	datum) (r	<u>n):</u>	
	Hole Purged: Ye			Purge End:				Water	Observatio	ns:		•
	Purge Volume: (I	trs)	<u> </u>	Post-Purge								
				(DTW) (m)		Commit	T-1		/ NI -			
		Top of Cover	(TOC)	Post testir remarks:	-	Samples		Yes				
		- Ground Leve	l (GL)			Sample I						
		Top of Pipew	ork (TOP)			Gas Car	nnister St	tart (mb)			
						Gas Car	nister E	nd (mb)				
						Gas Car	nister D	uration	(mins)			
		Depth to				Dep	•	San	ple Ref	Type (E'	W / G)	Container
		Water (DTW)				(from d	iatum)				,	
		Depth to Bas	e									
		- (DTB)										
		Contract Na	me:	North London	Busine	ss Park		Data C	ollected By		AM	
	SK	Project Mana	ager / Engineer:	AK	/AM			Check	ed:			
		Contract Re	f:	1921321				Page r	umber:		5	
				TDF3401							<u> </u>	
				TPF210 Iss	ue 6							

<u>Monitoring</u> <u>Date:</u>		TOC / GL / TO		100		GL (m):							
Pre-Testing Remark	<u>s:</u>		Air Temperatur	e:		15		Device	<u>:</u>	GA500	00		
			°C Weather:		(OVERCA	ST	Serial I	Number:				
			Ground Conditi	ions:				Daily C					
			Wind: NONE /	LIGHT / MED	IUM /	STRON	G						
			Tidal State: (if a	applicable) High	/ Low	/ Risina /	Falling	NONE					
							•						
Exploratory Position	<u>ID:</u>	ВН6	Monitoring Rou	ınd Number:	3			Test N	umber:	1			
Install Type: SINGL	E / DOUBLE	SINGLE	Pipe Ref: 1) SI Deep	hallow 2)	1			Pipe D Other		mm/ 40m	nm/ 40mm / 50mm /		
Time of			Боор			Gas tap):	SINGLE					
Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)		SINGLE DOUBLE							
Time Start (hh:mm)			1015	7.3	Obser	vations (e	e.g. on-site	activities)					
Time End (hh:mm)													
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	O	cygen	Carl		Hydroge		LEL	PID	
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%	6/vol)	mond (pp		sulphide (ppm)	;	(%)	(ppm)	
Time of flow monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)						((()					
5	0.0	0	0.0	0.1	2	21.0	C)	0				
10	0.0	15	0.0	1.9	<i>'</i>	18.2	С)	0				
15	0.0	30	0.0	1.9	,	17.4	C)	0				
20	0.0	60	0.0	1.9	ŕ	17.0	C)	0				
25	0.0	90	0.0	1.9	,	17.0	C)	0				
30	0.0	120	0.0	1.9	,	17.0	C)	0				
40	0.0	180	0.0	1.9	ŕ	17.0	C)	0				
50	0.0	240	0.0	1.9		17.0		0 0					
60	0.0	300	0.0	1.9	Í	17.0	C)	0				
Stage 1 gas flow - Peak (I/h)	0.0		Note: Flow sho and 30 second					•					
Stage 1 gas flow - Steady State (I/h)	0.0			ur within 30 seco									
STAGE 3	Depth (from datu	um) to water	DRY	Time:				LNAPL	. Top (from	datum) (n	<u>1):</u>		
WATER LEVEL OBSERVATION	(DTW): Depth (from datu	(m)	5	Purge Start				DNAPI	_ Top (from	datum) (r	n).		
	base (DTB): (m))	o e	-							<u></u>		
	Hole Purged: Ye			Purge End:				vvater	<u>Observatior</u>	1S:_			
	Purge Volume: (I	trs)		Post-Purge (DTW) (m)									
		Top of Cover	(TOC)	Post testir remarks:	-	Samples		Yes					
		· - Ground Leve	` '	- Ciliains	-	Sample I							
		Top of Pipew	ork (TOP)			Gas Can			-				
						Gas Can							
						Gas Can		uration	(mins)				
¥		Depth to Water (DTW)				Der (from d	•	San	nple Ref	Type (E	W / G)	Container	
		Depth to Bas	e										
l l		- (DTB)									ı		
		Contract Na		North London		ss Park			ollected By:		AM		
R	SK	Project Mana	ager / Engineer:	AK	/AM			Checked:					
		Contract Ref	f:	1921321				Page r	iumber:		6		
				TPF210 Iss	ue 6								

<u>Monitoring</u> <u>Date:</u>		TOC / GL / TO		100		GL (m):							
Pre-Testing Remarks			Air Temperatur	e:		15		Device	<u>:</u>	GA500	00		
			°C Weather:		,	OVERCA	ST	Serial I	Number:				
			Ground Conditi	ions:		DRY		Daily C					
			Wind: NONE /	LIGHT / MED	IUM /	STRON	G						
			Tidal State: /if a	applicable) High	/ 1 0 11	/ Dising /	Falling	NONE					
			Tiuai State. (ii a	applicable) High	/ LOW	/ Kisiriy /	<u>railitiy</u>						
Exploratory Position	ID:	BH7	Monitoring Rou	ınd Number:	3	3		Test Number:					
Install Type: SINGL	.E / DOUBLE	SINGLE	Pipe Ref: 1) SI	hallow 2)	1			Pipe D	iameter: 19	mm/ 40m	nm/ 40mm / 50mm / 40		
			Deep	, 1				Other (mm)					
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)	SINGLE /			SINGLE					
Time Start (hh:mm)			1015	6.25	Obse	rvations (e	e.g. on-site	activities)					
Time End (hh:mm)													
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	O	kygen			Hydroge		LEL	PID	
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%	%/vol)			sulphide (ppm)	;	(%)	(ppm)	
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	, ,		,	,	(1)	,	(11 /		,		
5	0.0	0	0.0	0.3	2	20.8	C	0					
10	0.0	15	0.0	0.8	-	12.7	1	Carbon Hymonoxide (ppm) 0 1 0 0 0 0 0 0 vals up to 30 seconteady-state readir he differential pre LNAPL Top DNAPL Top		\dashv			
15	0.0	30	0.0	0.9		8.8	C)	0 0 0 0 0 0 0				
20	0.0	60	0.0	1.0		8.5	C)	0			1	
25	0.0	90	0.0	1.0		8.4	C)	0				
30	0.0	120	0.0	1.0		8.4	C)	0				
40	0.0	180	0.0	1.0		8.4	C)	0				
50	0.0	240	0.0	1.0		8.4	C)	0				
60	0.0	300	0.0	1.0		8.4	C)	0				
Stage 1 gas flow -			Note: Flow sho	uld be recorded	d at 5 s	second int	tervals u	p to 30	seconds, 10) second	intervals	to 2 minutes	
Peak (I/h)													
Stage 1 gas flow - Steady State (I/h)			recorded during		onus id	a minute	. IIIe uii	петенца	ii piessuie i	eauling (ii	ira) sii	Julu also be	
STAGE 3	Depth (from datu		DRY	Time:				LNAPL	. Top (from	datum) (n	<u>1):</u>		
WATER LEVEL OBSERVATION	(DTW): Depth (from datu		4.97	Purge Start	:			DNAPI	Top (from	datum) (r	<u>n):</u>	1	
	base (DTB): (m) Hole Purged: Ye			Purge End:				Water	Observatior	ns:			
	Purge Volume: (I			Post-Purge		-							
				(DTW) (m)		Commit	Tales	V	/ No. T				
		Top of Cover	(TOC)	Post testir remarks	-	Samples		Yes					
		Ground Leve	` '			Sample							
		Top of Pipew	ork (TOP)			Gas Car			-				
						Gas Car							
						Gas Car		1					
	Depth to Water (DTW)					(from c		San	nple Ref	Type (E'	W / G)	Container	
		. ,				 							
		Depth to Bas	e										
		- (DTB)		N. a	<u> </u>							·	
Contract Name:				North London		ss Park		Data Collected By:			AM		
R	SK	Project Mana	ager / Engineer:	AK	Z/AM			Checked:					
		Contract Ref	f:	1921321				Page r	iumber:	7			
				TPF210 Iss	ue 6								

<u>Monitoring</u> <u>Date:</u>		TOC / GL / TOI		100		GL (m):							
Pre-Testing Remark			Air Temperatur	e:		15		Device	<u>:</u>	GA500	00		
			°C Weather:			OVERCA	ST	Serial I	Number:				
			Ground Conditi	ions:		DRY		Daily C					
			Wind: NONE /	LIGHT / MED	DIUM /	STRON	G						
			Tidal State: /if a	applicable) High	/ 1 0 4/	/ Diging /	Falling	NONE					
			Tiuai State. (ii a	applicable) High	I / LOW	/ Kisiriy /	railing						
Exploratory Position	ID:	BH8	Monitoring Rou	ınd Number:	3	3		Test N	umber:	1			
Install Type: SINGL	.E / DOUBLE	SINGLE	Pipe Ref: 1) SI	hallow 2)	1			Pipe D	iameter: 19	mm/ 40m	mm/ 40mm / 50mm / 40		
			Deep	, 1				Other (mm)					
Time of Monitoring (hh:mm)	Flow readings	Gas readings	Atmospheric Pressure (mb)	Differential Pressure (mb)	SINGLE /			SINGLE					
Time Start (hh:mm)			1015	3.05	Obse	rvations (e	e.g. on-site	activities)	-				
Time End (hh:mm)													
Stage 1 Flow	Stage 1 Flow	Stage 2 Gas	Methane	Carbon	O	kygen	Carl		Hydroge		LEL	PID	
Readings	Readings	Monitoring:	(%/vol)	Dioxide (%/vol)	(%	%/vol)	mond (pp		sulphide (ppm)	•	(%)	(ppm)	
Time of <u>flow</u> monitoring (sec)	Flow Reading (I/hr)	Time of gas monitoring (sec)	, ,		,	,	(1.1	,	(11 /		,	(11)	
5	0.0	0	0.0	0.2	2	21.0	C)	0				
10	0.0	15	0.0	8.6		14.2	1		0	\dashv			
15	0.0	30	0.0	8.7		10.5	C)	0				
20	0.0	60	0.0	8.7		10.1	C)	0				
25	0.0	90	0.0	8.7		10.1	C)	0				
30	0.0	120	0.0	8.7		10.0	C)	0				
40	0.0	180	0.0	8.7		10.0	C)	0				
50	0.0	240	0.0	8.7		10.0	C	0					
60	0.0	300	0.0	8.7		10.0	C)	0				
Stage 1 gas flow -	0.0		Note: Flow sho	uld be recorded	d at 5 s	second int	tervals u	p to 30	seconds, 10) second	intervals	to 2 minutes	
Peak (I/h)	0.0		and 30 second	intervals up to ur within 30 sec									
Stage 1 gas flow - Steady State (I/h)	0.0		recorded during		onus it	a minute	s. The un	петенца	ii piessuie i	eauling (ii	ira) sii	ould also be	
STAGE 3	Depth (from datu		3.05	Time:				LNAPL	. Top (from	datum) (n	<u>1):</u>		
WATER LEVEL OBSERVATION	(DTW): Depth (from datu		4.91	Purge Start				DNAPI	Top (from	datum) (r	<u>n):</u>	1	
	base (DTB): (m) Hole Purged: Ye			Purge End:		-		<u>W</u> ater	Observation	าร:_		1	
	Purge Volume: (I			Post-Purge		-							
				(DTW) (m)	_	Committee	Teles	V	/ N- I				
		Top of Cover	(TOC)	Post testir remarks:	-	Samples		Yes					
		Ground Leve	` '			Sample							
		Top of Pipew	ork (TOP)			Gas Car			-				
						Gas Car							
						Gas Car		1					
		Depth to Water (DTW)				(from c	•	San	ple Ref	Type (E	W / G)	Container	
		()											
		Depth to Bas	e										
		- (DTB)											
		Contract Na		North London		ss Park			ollected By:		AM		
R	SK	Project Mana	ager / Engineer:	AK	(/AM			Checked:]		
		Contract Ref	f:	1921321				Page number:			8		
				TPF210 Iss	ue 6								

APPENDIX J LABORATORY CERTIFICATES FOR SOIL ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/08313

Issue Number: 1 **Date:** 05 October, 2020

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Andrew Kent

Project Name: North London Business Park (N.L.B.P)

Project Ref: 1921321 Order No: N/A

Date Samples Received: 18/08/20
Date Instructions Received: 01/10/20
Date Analysis Completed: 05/10/20

Prepared by: Approved by:

Sophie France Holly Neary-King

Client Service Manager Client Services Supervisor

Envirolab Job Number: 20/08313 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

				jeet itel. 13			
Lab Sample ID	20/08313/1						
Client Sample No							
Client Sample ID	ВН3						
Depth to Top	0.40						
Depth To Bottom						ion	
Date Sampled	13-Aug-20					etect	4
Sample Type	Soil - ES				,	Limit of Detection	Method ref
Sample Matrix Code	6AE				Units	Ë	Meth
% Stones >10mm _A	18.1				% w/w	0.1	A-T-044
pH _D ^{M#}	7.92				рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.02				g/l	0.01	A-T-026s
Sulphate (acid soluble) _D M#	360				mg/kg	200	A-T-028s
Total Organic Carbon _D ^{M#}	0.75				% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	13				mg/kg	1	A-T-024s
Cadmium _D ^{M#}	1.1				mg/kg	0.5	A-T-024s
Copper _D ^{M#}	51				mg/kg	1	A-T-024s
Chromium _D ^{M#}	37				mg/kg	1	A-T-024s
Lead _D ^{M#}	61				mg/kg	1	A-T-024s
Mercury _D	0.68				mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	34				mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1				mg/kg	1	A-T-024s
Zinc _D ^{M#}	100				mg/kg	5	A-T-024s

Client Project Name: North London Business Park (N.L.B.P) Envirolab Job Number: 20/08313

Client Project Ref: 1921321

Lab Sample ID	20/08313/1						
Client Sample No							
Client Sample ID	внз						
Depth to Top	0.40						
Depth To Bottom						ion	
Date Sampled	13-Aug-20					Detection	4
Sample Type	Soil - ES				,	t of D	Method ref
Sample Matrix Code	6AE				Units	Limit of	Meth
Asbestos in Soil (inc. matrix) ^							
Asbestos in soil _D #	NAD						A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A						A-T-045

Envirolab Job Number: 20/08313 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

				ject Kei. 13	-			
Lab Sample ID	20/08313/1							
Client Sample No								
Client Sample ID	ВН3							
Depth to Top	0.40							
Depth To Bottom							ion	
Date Sampled	13-Aug-20						Limit of Detection	4
Sample Type	Soil - ES						of D	Method ref
Sample Matrix Code	6AE					Units	Limit	Meth
PAH-16MS								
Acenaphthene _A ^{M#}	<0.01					mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01					mg/kg	0.01	A-T-019s
Anthracene _A M#	<0.02					mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A M#	0.18					mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.24					mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.27					mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.14					mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.09					mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.24					mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04					mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.25					mg/kg	80.0	A-T-019s
Fluorene _A ^{M#}	<0.01					mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.16					mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03					mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.07					mg/kg	0.03	A-T-019s
Pyrene _A M#	0.25					mg/kg	0.07	A-T-019s
Total PAH-16MS _A M#	1.89					mg/kg	0.01	A-T-019s

			Onche i io	ject Rei: 19			
Lab Sample ID	20/08313/1						
Client Sample No							
Client Sample ID	ВН3						
Depth to Top	0.40						
Depth To Bottom						ion	
Date Sampled	13-Aug-20					etect	_
Sample Type	Soil - ES					Limit of Detection	Method ref
Sample Matrix Code	6AE				Units	Limit	Meth
TPH CWG							
Ali >C5-C6 _A #	<0.01				mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01				mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1				mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	<1				mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	<1				mg/kg	1	A-T-055s
Ali >C16-C21 _A M#	<1				mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	5				mg/kg	1	A-T-055s
Total Aliphatics _A	5				mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01				mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01				mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	<1				mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1				mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1				mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	<1				mg/kg	1	A-T-055s
Aro >C21-C35 _A M#	11				mg/kg	1	A-T-055s
Total Aromatics _A	12				mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35) _A	16				mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01				mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01				mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01				mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01				mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01				mg/kg	0.01	A-T-022s
MTBE _A #	<0.01				mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected. N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

20/08313

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead, Project No:

Hertfordshire, UK, HP3 9RT Date Received: 01/10/2020 (am)

Project: North London Business Park (N.L.B.P) Cool Box Temperatures (°C): 16.4, 19.4

Clients Project No: 1921321

Lab Sample ID	20/08313/1
Client Sample No	
Client Sample ID/Depth	BH3 0.40m
Date Sampled	13/08/20
Deviation Code	
F	✓

Key

Maximum holding time exceeded between sampling date and analysis for analytes listed below

HOLDING TIME EXCEEDANCES

20/08313/1
BH3 0.40m
13/08/20
✓
✓
✓
✓
✓
✓

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/07394

Issue Number: 1 **Date:** 17 September, 2020

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Alex Marcelo/Andrew Kent

Project Name: North London Business Park (N.L.B.P)

Project Ref: 1921321 Order No: N/A

Date Samples Received:25/08/20Date Instructions Received:04/09/20Date Analysis Completed:17/09/20

Prepared by: Approved by:

Richard Wong Danielle Brierley Client Manager Client Manager

Lab Sample ID	20/07394/1	20/07394/2	20/07394/3	20/07394/4	20/07394/5	20/07394/6	20/07394/7			
Client Sample No										
Client Sample ID	TP1	TP2	TP2	TP3	TP4	TP5	TP6			
Depth to Top	0.50	0.10	0.70	0.50	0.80	0.60	0.10			
Depth To Bottom									ion	
Date Sampled	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	26-Aug-20		Limit of Detection	-
Sample Type	Soil - ES	,	t of D	Method ref						
Sample Matrix Code	5AE	6AE	5AE	6ABE	6AE	5AB	6ABE	Units	Limi	Meth
% Stones >10mm _A	4.0	11.2	22.3	25.7	36.3	14.6	19.2	% w/w	0.1	A-T-044
pH _D ^{M#}	8.12	6.91	8.01	8.14	8.07	7.76	7.77	pН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.12	<0.01	0.05	<0.01	0.04	0.12	<0.01	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D M#	300	450	<200	300	370	490	670	mg/kg	200	A-T-028s
Arsenic _D ^{M#}	2	18	2	4	3	2	16	mg/kg	1	A-T-024s
Cadmium _D M#	0.7	0.8	0.5	0.7	1.9	0.6	4.1	mg/kg	0.5	A-T-024s
Copper _D M#	75	87	23	302	3550	97	173	mg/kg	1	A-T-024s
Chromium _D M#	54	28	43	36	48	42	48	mg/kg	1	A-T-024s
Lead _D ^{M#}	18	219	19	115	459	49	563	mg/kg	1	A-T-024s
Mercury₀	0.84	2.00	0.30	0.60	0.49	0.56	1.56	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	47	27	26	45	142	34	54	mg/kg	1	A-T-024s
Selenium _D ^{M#}	2	<1	<1	1	<2	2	2	mg/kg	1	A-T-024s
Zinc _D ^{M#}	104	162	61	239	701	114	509	mg/kg	5	A-T-024s

		1				1	1		
20/07394/1	20/07394/2	20/07394/3	20/07394/4	20/07394/5	20/07394/6	20/07394/7			
TP1	TP2	TP2	TP3	TP4	TP5	TP6			
0.50	0.10	0.70	0.50	0.80	0.60	0.10			
								ion	
24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	26-Aug-20		etect	<u>.</u>
Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		οŧ	Method ref
5AE	6AE	5AE	6ABE	6AE	5AB	6ABE	Units	Limit	Meth
NAD	NAD	NAD	NAD	NAD	NAD	NAD			A-T-045
N/A	N/A	N/A	N/A	N/A	N/A	N/A			A-T-045
	TP1 0.50 24-Aug-20 Soil - ES 5AE	TP1 TP2 0.50 0.10 24-Aug-20 24-Aug-20 Soil - ES Soil - ES 5AE 6AE NAD NAD	TP1 TP2 TP2 0.50 0.10 0.70 24-Aug-20 24-Aug-20 24-Aug-20 Soil - ES Soil - ES Soil - ES 5AE 6AE 5AE NAD NAD NAD	TP1 TP2 TP2 TP3 0.50 0.10 0.70 0.50 24-Aug-20 24-Aug-20 24-Aug-20 Soil - ES Soil - ES Soil - ES Soil - ES 5AE 6AE 5AE 6ABE NAD NAD NAD NAD NAD	TP1 TP2 TP2 TP3 TP4 0.50 0.10 0.70 0.50 0.80 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 Soil - ES Soil - ES Soil - ES Soil - ES 5AE 6AE 5AE 6ABE 6AE NAD NAD NAD NAD NAD NAD	TP1 TP2 TP2 TP3 TP4 TP5 0.50 0.10 0.70 0.50 0.80 0.60 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES 5AE 6AE 5AE 6ABE 6AE 5AB NAD NAD NAD NAD NAD NAD	TP1 TP2 TP2 TP3 TP4 TP5 TP6 0.50 0.10 0.70 0.50 0.80 0.60 0.10 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 26-Aug-20 Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES 5AE 6AE 5AE 6ABE 6AE 5AB 6ABE NAD NAD NAD NAD NAD NAD NAD NAD	TP1 TP2 TP2 TP3 TP4 TP5 TP6 0.50 0.10 0.70 0.50 0.80 0.60 0.10 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 26-Aug-20 Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES 5AE 6AE 5AE 6ABE 6AE 5AB 6ABE NAD NAD NAD NAD NAD NAD NAD NAD	TP1 TP2 TP2 TP3 TP4 TP5 TP6 0.50 0.10 0.70 0.50 0.80 0.60 0.10 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 24-Aug-20 26-Aug-20 Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES Soil - ES 5AE 6AE 5AE 6ABE 6AE 5AB 6ABE NAD NAD NAD NAD NAD NAD NAD NAD

					••	ect net. 19				
Lab Sample ID	20/07394/1	20/07394/2	20/07394/3	20/07394/4	20/07394/5	20/07394/6	20/07394/7			
Client Sample No										
Client Sample ID	TP1	TP2	TP2	TP3	TP4	TP5	TP6			
Depth to Top	0.50	0.10	0.70	0.50	0.80	0.60	0.10			
Depth To Bottom									ion	
Date Sampled	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	26-Aug-20		etect	.
Sample Type	Soil - ES	Soil - ES	<u>,</u>	Limit of Detection	Method ref					
Sample Matrix Code	5AE	6AE	5AE	6ABE	6AE	5AB	6ABE	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	0.02	<0.01	<0.01	0.11	<0.01	0.10	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	0.02	<0.01	0.06	0.09	0.02	0.20	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	0.05	<0.02	0.06	0.44	0.03	1.29	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	0.30	<0.04	0.29	2.85	0.17	2.58	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	0.31	<0.04	0.42	2.31	0.25	1.75	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.44	<0.05	0.50	2.65	0.29	2.02	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	0.23	<0.05	0.36	1.28	0.30	0.89	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	0.16	<0.07	0.15	0.92	0.10	0.69	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	0.40	<0.06	0.36	2.50	0.23	2.37	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04	0.04	<0.04	0.06	0.27	0.05	0.15	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	0.56	<0.08	0.40	5.27	0.25	8.67	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	0.01	<0.01	<0.01	0.08	<0.01	0.31	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A M#	<0.03	0.27	<0.03	0.41	1.67	0.33	1.11	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A M#	0.04	0.27	<0.03	0.07	1.40	0.07	4.40	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	0.50	<0.07	0.42	4.69	0.27	7.48	mg/kg	0.07	A-T-019s
Total PAH-16MS _A M#	<0.08	3.58	<0.08	3.56	26.5	2.36	34	mg/kg	0.01	A-T-019s

						ect het. 19				
Lab Sample ID	20/07394/1	20/07394/2	20/07394/3	20/07394/4	20/07394/5	20/07394/6	20/07394/7			
Client Sample No										
Client Sample ID	TP1	TP2	TP2	TP3	TP4	TP5	TP6			
Depth to Top	0.50	0.10	0.70	0.50	0.80	0.60	0.10			
Depth To Bottom									ion	
Date Sampled	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	26-Aug-20		etect	+
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	5AE	6AE	5AE	6ABE	6AE	5AB	6ABE	Units	Limit	Meth
voc										
Dichlorodifluoromethane _A	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Chloromethane _A	-	-	-	-	<10	-	-	μg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Bromomethane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Chloroethane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,1-Dichloroethene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Carbon Disulphide _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Dichloromethane _A	-	-	-	-	<5	-	-	μg/kg	5	A-T-006s
trans 1,2-Dichloroethene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
cis 1,2-Dichloroethene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
2,2-Dichloropropane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Bromochloromethane _A #	-	•	-	-	<5	-	-	μg/kg	5	A-T-006s
Chloroform _A #	-	•	-	-	<1	-	-	μg/kg	1	A-T-006s
1,1,1-Trichloroethane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,1-Dichloropropene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Carbon Tetrachloride [#]	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	-	-	-	<2	-	-	μg/kg	2	A-T-006s
Benzene [#]	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Trichloroethene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,2-Dichloropropane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Dibromomethane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Bromodichloromethane _A #	-	-	-	-	<10	-	-	μg/kg	10	A-T-006s
cis 1,3-Dichloropropene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Toluene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
trans 1,3-Dichloropropene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,1,2-Trichloroethane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,3-Dichloropropane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Tetrachloroethene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Dibromochloromethane _A #	-	-	-	-	<3	-	-	μg/kg	3	A-T-006s
1,2-Dibromoethane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s

Lab Sample ID	20/07394/1	20/07394/2	20/07394/3	20/07394/4	20/07394/5	20/07394/6	20/07394/7			
Client Sample No										
Client Sample ID	TP1	TP2	TP2	TP3	TP4	TP5	TP6			
Depth to Top	0.50	0.10	0.70	0.50	0.80	0.60	0.10			
Depth To Bottom									E	
Date Sampled	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	26-Aug-20		ect!	
Sample Type	Soil - ES		of De	od re						
Sample Matrix Code	5AE	6AE	5AE	6ABE	6AE	5AB	6ABE	Units	Limit of Detection	Method ref
Chlorobenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Ethylbenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
m & p Xylene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
o-Xylene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Styrene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Bromoform _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Isopropylbenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,2,3-Trichloropropane _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
Bromobenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
n-Propylbenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
2-Chlorotoluene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,3,5-Trimethylbenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
4-Chlorotoluene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
tert-Butylbenzene _A #	-	-	-	-	<2	-	-	μg/kg	2	A-T-006s
1,2,4-Trimethylbenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
sec-Butylbenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
4-Isopropyltoluene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,3-Dichlorobenzene _A	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,4-Dichlorobenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
n-Butylbenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,2-Dichlorobenzene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,2-Dibromo-3-chloropropane (DCBP)A	-	-	-	-	<2	-	-	μg/kg	2	A-T-006s
1,2,4-Trichlorobenzene _A	-	-	-	-	<3	-	-	μg/kg	3	A-T-006s
Hexachlorobutadiene _A #	-	-	-	-	<1	-	-	μg/kg	1	A-T-006s
1,2,3-Trichlorobenzene _A	-	-	-	-	<3	-	-	μg/kg	3	A-T-006s

					Chefit F10	ect hei: 19	21021			
Lab Sample ID	20/07394/1	20/07394/2	20/07394/3	20/07394/4	20/07394/5	20/07394/6	20/07394/7			
Client Sample No										
Client Sample ID	TP1	TP2	TP2	TP3	TP4	TP5	TP6			
Depth to Top	0.50	0.10	0.70	0.50	0.80	0.60	0.10			
Depth To Bottom									uo	
Date Sampled	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	24-Aug-20	26-Aug-20		etecti	_
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	5AE	6AE	5AE	6ABE	6AE	5AB	6ABE	Units	Limit	Meth
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21AM#	<1	<1	<1	2	2	2	<1	mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	1	4	2	8	34	6	10	mg/kg	1	A-T-055s
Total Aliphatics _A	1	4	2	10	36	8	10	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1	<1	<1	2	4	<1	<1	mg/kg	1	A-T-055s
Aro >C16-C21 _A M#	<1	5	2	22	33	2	5	mg/kg	1	A-T-055s
Aro >C21-C35 _A M#	1	25	12	79	144	10	30	mg/kg	1	A-T-055s
Total Aromatics _A	1	30	14	103	180	12	34	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35) _A	2	34	15	113	217	20	44	mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s

						•				
Lab Sample ID	20/07394/8	20/07394/9	20/07394/10	20/07394/11	20/07394/12	20/07394/13	20/07394/14			
Client Sample No										
Client Sample ID	TP6	TP7	TP8	TP9	TP10	TP11	TP12			
Depth to Top	0.40	0.10	0.50	0.30	1.50	0.50	1.00			
Depth To Bottom									<u>io</u>	
Date Sampled	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	25-Aug-20	24-Aug-20	25-Aug-20		Limit of Detection	<u>.</u>
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		ofD	Method ref
Sample Matrix Code	6ABE	6ABE	6ABE	6ABE	5AE	6ABE	5AE	Units	Limit	Meth
% Stones >10mm _A	13.2	20.6	46.0	33.7	<0.1	27.3	6.6	% w/w	0.1	A-T-044
pH _D ^{M#}	7.86	7.80	8.39	7.92	8.11	8.16	8.12	pН	0.01	A-T-031s
Sulphate (water sol 2:1) _D M#	<0.01	<0.01	0.04	<0.01	0.25	0.01	0.18	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D M#	360	1200	490	270	790	210	520	mg/kg	200	A-T-028s
Total Organic Carbon _D ^{M#}	-	-	1.08	0.74	-	-	-	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	6	8	4	11	3	4	2	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	1.0	0.7	<0.5	0.7	1.8	0.6	1.2	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	419	35	36	33	528	69	129	mg/kg	1	A-T-024s
Chromium _D M#	40	33	21	21	53	31	48	mg/kg	1	A-T-024s
Lead _D ^{M#}	172	40	160	52	181	47	55	mg/kg	1	A-T-024s
Mercury₀	0.71	0.82	0.91	0.34	0.76	0.36	0.32	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	54	33	19	25	79	30	53	mg/kg	1	A-T-024s
Selenium _D ^{M#}	2	5	<1	<1	3	<1	2	mg/kg	1	A-T-024s
Zinc _D M#	290	98	104	111	362	88	131	mg/kg	5	A-T-024s

Lab Sample ID	20/07394/8	20/07394/9	20/07394/10	20/07394/11	20/07394/12	20/07394/13	20/07394/14			
Client Sample No										
Client Sample ID	TP6	TP7	TP8	TP9	TP10	TP11	TP12			
Depth to Top	0.40	0.10	0.50	0.30	1.50	0.50	1.00			
Depth To Bottom									ion	
Date Sampled	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	25-Aug-20	24-Aug-20	25-Aug-20		Detection	.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of	Method ref
Sample Matrix Code	6ABE	6ABE	6ABE	6ABE	5AE	6ABE	5AE	Units	Limit	Meth
Asbestos in Soil (inc. matrix) ^										
Asbestos in soil _D #	NAD	NAD	NAD	NAD	NAD	NAD	NAD			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	N/A			A-T-045

						ect net. 19				
Lab Sample ID	20/07394/8	20/07394/9	20/07394/10	20/07394/11	20/07394/12	20/07394/13	20/07394/14			
Client Sample No										
Client Sample ID	TP6	TP7	TP8	TP9	TP10	TP11	TP12			
Depth to Top	0.40	0.10	0.50	0.30	1.50	0.50	1.00			
Depth To Bottom									u O	
Date Sampled	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	25-Aug-20	24-Aug-20	25-Aug-20		Limit of Detection	-
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of D	Method ref
Sample Matrix Code	6ABE	6ABE	6ABE	6ABE	5AE	6ABE	5AE	Units	Ë	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	0.01	<0.01	0.01	<0.01	0.01	0.02	0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	0.02	<0.01	0.02	0.01	0.01	0.03	0.01	mg/kg	0.01	A-T-019s
Anthracene _A M#	0.05	<0.02	0.04	<0.02	0.06	0.07	0.03	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.47	0.08	0.18	0.08	0.32	0.43	0.14	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.44	0.08	0.19	0.08	0.27	0.67	0.14	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.61	0.12	0.26	0.10	0.48	0.81	0.19	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.31	0.06	0.20	0.06	0.18	0.55	0.09	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.20	<0.07	0.08	<0.07	0.15	0.25	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.56	0.10	0.23	0.10	0.41	0.53	0.19	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.06	<0.04	<0.04	<0.04	<0.04	0.10	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.84	0.14	0.30	0.10	0.66	0.74	0.29	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	0.01	<0.01	<0.01	<0.01	0.01	0.02	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.38	0.07	0.21	0.07	0.23	0.64	0.11	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A M#	0.27	0.04	0.12	<0.03	0.17	0.26	0.15	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	0.76	0.13	0.27	0.10	0.58	0.74	0.28	mg/kg	0.07	A-T-019s
Total PAH-16MS _A M#	4.99	0.82	2.11	0.70	3.54	5.86	1.63	mg/kg	0.01	A-T-019s

					0.110111111111	cot rici. 13				
Lab Sample ID	20/07394/8	20/07394/9	20/07394/10	20/07394/11	20/07394/12	20/07394/13	20/07394/14			
Client Sample No										
Client Sample ID	TP6	TP7	TP8	TP9	TP10	TP11	TP12			
Depth to Top	0.40	0.10	0.50	0.30	1.50	0.50	1.00			
Depth To Bottom									uo	
Date Sampled	26-Aug-20	26-Aug-20	26-Aug-20	26-Aug-20	25-Aug-20	24-Aug-20	25-Aug-20		stecti	
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	od re
Sample Matrix Code	6ABE	6ABE	6ABE	6ABE	5AE	6ABE	5AE	Units	Limit	Method ref
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	<1	<1	2	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21 _A M#	<1	<1	5	<1	<1	2	1	mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	5	8	47	1	5	5	3	mg/kg	1	A-T-055s
Total Aliphatics	5	8	54	1	5	7	4	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1	<1	2	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C16-C21 _A M#	3	2	6	1	5	4	2	mg/kg	1	A-T-055s
Aro >C21-C35 _A M#	28	25	79	8	24	30	10	mg/kg	1	A-T-055s
Total Aromatics _A	31	27	88	9	30	34	12	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35) _A	37	36	142	11	35	40	17	mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s

	1	1	1	1		1				
Lab Sample ID	20/07394/15	20/07394/16	20/07394/17	20/07394/18	20/07394/19	20/07394/20	20/07394/21			
Client Sample No										
Client Sample ID	TP13	TP14	TP15	TP16	TP17	TP18	BH5			
Depth to Top	0.40	0.50	0.15	1.00	0.50	1.50	0.20			
Depth To Bottom									ion	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20		Limit of Detection	-
Sample Type	Soil - ES	"	t of D	Method ref						
Sample Matrix Code	6AE	6AE	6AE	5AE	5AE	5AE	6ABE	Units	Limil	Meth
% Stones >10mm _A	6.1	<0.1	10.7	<0.1	<0.1	<0.1	17.9	% w/w	0.1	A-T-044
pH _D M#	7.20	7.79	7.65	8.13	8.34	8.24	7.95	pН	0.01	A-T-031s
Sulphate (water sol 2:1) _D M#	0.02	0.06	<0.01	0.41	0.05	0.03	0.02	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D M#	290	420	820	1300	200	210	1400	mg/kg	200	A-T-028s
Total Organic Carbon _D ^{M#}	-	1.29	-	-	0.17	-	-	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	4	3	4	2	3	<1	8	mg/kg	1	A-T-024s
Cadmium _D M#	0.6	0.7	1.0	1.4	0.6	0.8	0.7	mg/kg	0.5	A-T-024s
Copper _D M#	18	67	86	344	32	116	24	mg/kg	1	A-T-024s
Chromium _D ^{M#}	36	43	29	46	39	50	26	mg/kg	1	A-T-024s
Lead _D ^{M#}	25	102	81	73	17	26	112	mg/kg	1	A-T-024s
Mercury₀	0.24	0.40	0.38	0.38	<0.17	<0.17	1.33	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	23	28	31	60	39	48	25	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	3	4	<1	2	2	mg/kg	1	A-T-024s
Zinc _D ^{M#}	67	114	147	191	80	99	87	mg/kg	5	A-T-024s

Lab Sample ID	20/07394/15	20/07394/16	20/07394/17	20/07394/18	20/07394/19	20/07394/20	20/07394/21			
Client Sample No										
Client Sample ID	TP13	TP14	TP15	TP16	TP17	TP18	BH5			
Depth to Top	0.40	0.50	0.15	1.00	0.50	1.50	0.20			
Depth To Bottom									ion	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20		Detection	Ť.
Sample Type	Soil - ES		of	Method ref						
Sample Matrix Code	6AE	6AE	6AE	5AE	5AE	5AE	6ABE	Units	Limit	Meth
Asbestos in Soil (inc. matrix) ^										
Asbestos in soil _D #	NAD			A-T-045						
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A	N/A	N/A	N/A	N/A			A-T-045

						ect ner. 13				
Lab Sample ID	20/07394/15	20/07394/16	20/07394/17	20/07394/18	20/07394/19	20/07394/20	20/07394/21			
Client Sample No										
Client Sample ID	TP13	TP14	TP15	TP16	TP17	TP18	BH5			
Depth to Top	0.40	0.50	0.15	1.00	0.50	1.50	0.20			
Depth To Bottom								=	uo	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	=	etecti	-
Sample Type	Soil - ES	١ .	Limit of Detection	Method ref						
Sample Matrix Code	6AE	6AE	6AE	5AE	5AE	5AE	6ABE	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	0.13	0.04	0.04	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	0.11	0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A M#	<0.02	<0.02	<0.02	0.08	0.22	0.10	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A M#	<0.04	0.07	0.15	0.15	1.64	0.68	0.10	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A M#	<0.04	0.08	0.16	0.09	1.34	0.73	0.13	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.11	0.22	0.14	1.73	0.82	0.13	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A M#	<0.05	0.07	0.12	<0.05	0.68	0.47	0.11	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A M#	<0.07	<0.07	<0.07	<0.07	0.58	0.31	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	<0.06	0.10	0.19	0.19	1.64	0.77	0.13	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04	<0.04	<0.04	<0.04	0.15	0.16	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	0.10	0.21	0.47	2.57	0.86	0.16	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	0.04	0.02	0.02	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A M#	<0.03	0.07	0.12	0.06	0.88	0.69	0.13	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A M#	<0.03	<0.03	0.06	0.26	0.53	0.17	0.05	mg/kg	0.03	A-T-019s
Pyrene _A M#	<0.07	0.09	0.20	0.35	2.32	0.80	0.15	mg/kg	0.07	A-T-019s
Total PAH-16MS _A M#	<0.08	0.69	1.43	1.96	14.4	6.63	1.09	mg/kg	0.01	A-T-019s

Lab Sample ID	20/07394/15	20/07394/16	20/07394/17	20/07394/18	20/07394/19	20/07394/20	20/07394/21			
Client Sample No										
Client Sample ID	TP13	TP14	TP15	TP16	TP17	TP18	BH5			
Depth to Top	0.40	0.50	0.15	1.00	0.50	1.50	0.20			
Depth To Bottom									u	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20		etecti	
Sample Type	Soil - ES		Limit of Detection	Method ref						
Sample Matrix Code	6AE	6AE	6AE	5AE	5AE	5AE	6ABE	Units	Limit	Meth
voc										
Dichlorodifluoromethane₄	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
ChloromethaneA	-	-	-	<10	-	-	-	μg/kg	10	A-T-006s
Vinyl Chloride (Chloroethene) _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Bromomethane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Chloroethane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Trichlorofluoromethane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloroethene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Carbon Disulphide [#]	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Dichloromethane _A	-	-	-	<5	-	-	-	μg/kg	5	A-T-006s
trans 1,2-Dichloroethene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloroethane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
cis 1,2-Dichloroethene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
2,2-Dichloropropane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Bromochloromethane _A #	-	-	-	<5	-	-	-	μg/kg	5	A-T-006s
Chloroform _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,1,1-Trichloroethane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,1-Dichloropropene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Carbon Tetrachloride _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,2-Dichloroethane _A #	-	-	-	<2	-	-	-	μg/kg	2	A-T-006s
Benzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Trichloroethene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,2-Dichloropropane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Dibromomethane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Bromodichloromethane _A #	-	-	-	<10	-	-	-	μg/kg	10	A-T-006s
cis 1,3-Dichloropropene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Toluene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
trans 1,3-Dichloropropene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,1,2-Trichloroethane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,3-Dichloropropane₄ [#]	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Tetrachloroethene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Dibromochloromethane _A #	-	-	-	<3	-	-	-	μg/kg	3	A-T-006s
1,2-Dibromoethane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
· · · · · · · · · · · · · · · · · · ·										

						•				
Lab Sample ID	20/07394/15	20/07394/16	20/07394/17	20/07394/18	20/07394/19	20/07394/20	20/07394/21			
Client Sample No										
Client Sample ID	TP13	TP14	TP15	TP16	TP17	TP18	BH5			
Depth to Top	0.40	0.50	0.15	1.00	0.50	1.50	0.20			
Depth To Bottom									uo	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20		stecti	
Sample Type	Soil - ES		of De	od re						
Sample Matrix Code	6AE	6AE	6AE	5AE	5AE	5AE	6ABE	Units	Limit of Detection	Method ref
Chlorobenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,1,1,2-Tetrachloroethane _A	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Ethylbenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
m & p Xylene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
o-Xylene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Styrene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Bromoform _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Isopropylbenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,1,2,2-Tetrachloroethane _A	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,2,3-Trichloropropane _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
Bromobenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
n-Propylbenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
2-Chlorotoluene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,3,5-Trimethylbenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
4-Chlorotoluene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
tert-Butylbenzene _A #	-	-	-	<2	-	-	-	μg/kg	2	A-T-006s
1,2,4-Trimethylbenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
sec-Butylbenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
4-Isopropyltoluene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,3-Dichlorobenzene _A	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,4-Dichlorobenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
n-Butylbenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,2-Dichlorobenzene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,2-Dibromo-3-chloropropane (DCBP)A	-	-	-	<2	-	-	-	μg/kg	2	A-T-006s
1,2,4-Trichlorobenzene _A	-	-	-	<3	-	-	-	μg/kg	3	A-T-006s
Hexachlorobutadiene _A #	-	-	-	<1	-	-	-	μg/kg	1	A-T-006s
1,2,3-Trichlorobenzene _A	-	-	-	<3	-	-	-	μg/kg	3	A-T-006s

					Onome i roj	cot rici. 13				
Lab Sample ID	20/07394/15	20/07394/16	20/07394/17	20/07394/18	20/07394/19	20/07394/20	20/07394/21			
Client Sample No										
Client Sample ID	TP13	TP14	TP15	TP16	TP17	TP18	BH5			
Depth to Top	0.40	0.50	0.15	1.00	0.50	1.50	0.20			
Depth To Bottom									uo	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20	25-Aug-20		stecti	
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	6AE	6AE	6AE	5AE	5AE	5AE	6ABE	Units	Limit	Meth
TPH CWG										
Ali >C5-C6 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C16-C21AM#	10	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	599	14	4	3	7	18	13	mg/kg	1	A-T-055s
Total Aliphatics	609	14	4	3	7	18	13	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C12-C16A	4	<1	<1	1	<1	<1	<1	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	234	1	2	21	5	8	3	mg/kg	1	A-T-055s
Aro >C21-C35 _A M#	428	21	17	45	22	63	38	mg/kg	1	A-T-055s
Total Aromatics _A	666	22	19	68	27	71	41	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35) _A	1270	36	23	71	34	89	54	mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-022s
	•	•	•					•		

Lab Sample ID	20/07394/25	20/07394/30	20/07394/40	20/07394/48	20/07394/55	20/07394/61	20/07394/62			
Client Sample No										
Client Sample ID	TP3	TP7	TP15	TP16	BH1	TP3 + TP4	TP7 + TP8			
Depth to Top	0.75	0.50	0.80	0.50	1.75	0.75	0.50			
Depth To Bottom						0.80			uo	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	19-Aug-20	24-Aug-20	26-Aug-20		Limit of Detection	<u>.</u>
Sample Type	Soil - ES		ofD	Method ref						
Sample Matrix Code					5AE	6ABE	6ABE	Units	Limit	Meth
% Stones >10mm _A	-	-	-	-	9.3	25.7	45.8	% w/w	0.1	A-T-044
pH _D ^{M#}	-	-	-	-	7.96	8.16	10.84	рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	-	-	-	-	0.13	-	-	g/l	0.01	A-T-026s
Sulphate (acid soluble) _D M#	-	-	-	-	650	-	-	mg/kg	200	A-T-028s
Total Organic Carbon _D M#	-	-	-	-	1.61	1.78	0.66	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	-	-	-	-	5	-	-	mg/kg	1	A-T-024s
Cadmium _D M#	-	-	-	-	0.5	-	-	mg/kg	0.5	A-T-024s
Copper _D M#	-	-	-	-	55	-	-	mg/kg	1	A-T-024s
Chromium _D ^{M#}	-	-	-	-	36	-	-	mg/kg	1	A-T-024s
Lead _D ^{M#}	-	-	-	-	48	-	-	mg/kg	1	A-T-024s
Mercury₀	-	-	-	-	0.34	-	-	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	-	-	-	-	28	-	-	mg/kg	1	A-T-024s
Selenium _D ^{M#}	-	-	-	-	<1	-	-	mg/kg	1	A-T-024s
Zinc _D M#	-	-	-	-	98	-	-	mg/kg	5	A-T-024s

Lab Sample ID	20/07394/25	20/07394/30	20/07394/40	20/07394/48	20/07394/55	20/07394/61	20/07394/62			
Client Sample No										
Client Sample ID	TP3	TP7	TP15	TP16	BH1	TP3 + TP4	TP7 + TP8			
Depth to Top	0.75	0.50	0.80	0.50	1.75	0.75	0.50			
Depth To Bottom						0.80			ion	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	19-Aug-20	24-Aug-20	26-Aug-20		Detection	Ť.
Sample Type	Soil - ES		of	Method ref						
Sample Matrix Code					5AE	6ABE	6ABE	Units	Limit	Meth
Asbestos in Soil (inc. matrix) ^										
Asbestos in soil _D #	-	-	-	-	NAD	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	-	-	-	-	N/A	-	-			A-T-045

Lab Sample ID	20/07394/25	20/07394/30	20/07394/40	20/07394/48	20/07394/55	20/07394/61	20/07394/62			
Client Sample No										
Client Sample ID	TP3	TP7	TP15	TP16	BH1	TP3 + TP4	TP7 + TP8			
Depth to Top	0.75	0.50	0.80	0.50	1.75	0.75	0.50			
Depth To Bottom						0.80			uo	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	19-Aug-20	24-Aug-20	26-Aug-20		etecti	-
Sample Type	Soil - ES		Limit of Detection	Method ref						
Sample Matrix Code					5AE	6ABE	6ABE	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A M#	-	-	-	-	0.34	-	-	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	-	-	-	-	0.03	-	-	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	-	-	-	-	0.38	-	-	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A M#	-	-	-	-	0.78	-	-	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A M#	-	-	-	-	0.74	-	-	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	-	-	-	-	0.75	-	-	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	-	-	-	-	0.53	-	-	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	-	-	-	-	0.29	-	-	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	-	-	-	-	0.86	-	-	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	-	-	-	-	0.15	-	-	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	-	-	-	-	1.55	-	-	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	-	-	-	-	0.23	-	-	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	-	-	-	-	0.65	-	-	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	-	-	-	-	<0.03	-	-	mg/kg	0.03	A-T-019s
Phenanthrene _A M#	-	-	-	-	1.43	-	-	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	-	-	-	-	1.42	-	-	mg/kg	0.07	A-T-019s
Total PAH-16MS _A M#	-	-	-	-	10.1	-	-	mg/kg	0.01	A-T-019s

					0.110111111111	ect fici. 13				
Lab Sample ID	20/07394/25	20/07394/30	20/07394/40	20/07394/48	20/07394/55	20/07394/61	20/07394/62			
Client Sample No										
Client Sample ID	TP3	TP7	TP15	TP16	BH1	TP3 + TP4	TP7 + TP8			
Depth to Top	0.75	0.50	0.80	0.50	1.75	0.75	0.50			
Depth To Bottom						0.80			uo	
Date Sampled	24-Aug-20	24-Aug-20	25-Aug-20	25-Aug-20	19-Aug-20	24-Aug-20	26-Aug-20		etecti	+
Sample Type	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref				
Sample Matrix Code					5AE	6ABE	6ABE	Units	Limit	Meth
TPH CWG										
Ali >C5-C6 _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	-	-	-	-	<1	-	-	mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	-	-	-	-	<1	-	-	mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	-	-	-	-	<1	-	-	mg/kg	1	A-T-055s
Ali >C16-C21AM#	-	-	-	-	1	-	-	mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	-	-	-	-	50	-	-	mg/kg	1	A-T-055s
Total Aliphatics	-	-	-	-	51	-	-	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	-	-	-	-	<1	-	-	mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	-	-	-	<1	-	-	mg/kg	1	A-T-055s
Aro >C12-C16A	-	-	-	-	3	-	-	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	-	-	-	-	9	-	-	mg/kg	1	A-T-055s
Aro >C21-C35 _A M#	-	-	-	-	73	-	-	mg/kg	1	A-T-055s
Total Aromatics _A	-	-	-	-	86	-	-	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35) _A	-	-	-	-	136	-	-	mg/kg	1	A-T-055s
BTEX - Benzene _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
MTBE _A #	-	-	-	-	<0.01	-	-	mg/kg	0.01	A-T-022s
	•	•	•				-	•		

Lab Sample ID	20/07394/63	20/07394/64					
Client Sample No							
Client Sample ID	TP11 + TP13	TP15 +TP16					
Depth to Top	0.40	0.50					
Depth To Bottom	0.50	0.80				ion	
Date Sampled	24-Aug-20	25-Aug-20				Detection	*
Sample Type	Soil - ES	Soil - ES				of O	Method ref
Sample Matrix Code	6AE	5AE			Units	Limit	Meth
% Stones >10mm _A	<0.1	<0.1			% w/w	0.1	A-T-044
pH _D ^{M#}	7.95	8.72			рН	0.01	A-T-031s
Total Organic Carbon _D ^{M#}	0.61	1.81			% w/w	0.03	A-T-032s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25 °C / 11550μS/cm @ 20 °C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead,

Hertfordshire, UK, HP3 9RT

Project: North London Business Park (N.L.B.P)

Clients Project No: 1921321

Project No: 20/07394

Date Received: 04/09/2020 (am)

Cool Box Temperatures (°C): 15.9 - 18.0

Lab Sample ID	20/07394/55	20/07394/61	20/07394/62	20/07394/63	20/07394/64
Client Sample No					
Client Sample ID/Depth	BH1 1.75m	TP3 + TP4 0.75-0.80m	TP7 + TP8 0.50m	TP11 + TP13 0.40-0.50m	TP15 +TP16 0.50-0.80m
Date Sampled	19/08/20	24/08/20	26/08/20	24/08/20	25/08/20
Deviation Code					
B1 (no VPH)		✓	✓	✓	✓
F	√				

Key

B1 (no VPH) Separate container not supplied for VPH/BTEX analysis

Maximum holding time exceeded between sampling date and analysis for analytes listed below

HOLDING TIME EXCEEDANCES

Lab Sample ID	20/07394/55
Client Sample No	
Client Sample ID/Depth	BH1 1.75m
Date Sampled	19/08/20
PAH-16MS	✓
VPHCWG	✓

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Mottram Road, Hyde, Cheshire, SK14 3AR

Final Test Report

Envirolab Job Number: 20/07394

Issue Number: 1 Date: 17-Sep-20

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead Hertfordshire

UK HP3 9RT

Project Manager: Alex Marcelo/Andrew Kent

Project Name: North London Business Park (N.L.B.P)

Project Ref: 1921321 Order No: N/A

Date Samples Received: 25-Aug-20
Date Instructions Received: 4-Sep-20
Date Analysis Completed: 17-Sep-20

Notes - Soil analysis

All results are reported as dry weight (<40 ℃).

For samples with Matrix Codes 1 - 6 natural stones > 10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample

 $\textbf{Secondary Matrix Codes:} \ A = \text{contains stones}, \ B = \text{contains construction rubble}, \ C = \text{contains visible hydrocarbons}, \ D = \text{contains glass/metal}, \ E = \text{contains roots/twigs}.$

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

Prepared by:

Richard Wong Client Manager Approved by:

Danielle Brierley Client Manager

Sample Details										
Lab Sample ID	Method	ISO17025	MCERTS	20/07394/6	i 1	Landfill Waste Acceptance Criteria Limits				
Client Sample Number										
Client Sample ID				TP3 + TP4						
Depth to Top				0.75			Stable Non-reactive			
Depth to Bottom				0.80		Inert Waste Landfill	Hazardous Waste in	Hazardous Waste Landfill		
Date Sampled				24/08/2020)		Non-Hazardous Landfill	Lanum		
Sample Type				Soil - ES						
Sample Matrix Code				6ABE						
Solid Waste Analysis										
pH (pH Units) _D	A-T-031	N	N	8.16		-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	Ν	0.29		-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	Ν	0.04		-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	N	Ν	5.4		-	-	10		
Total Organic Carbon (%) _D	A-T-032	N	N	1.78		3	5	6		
PAH Sum of 17 (mg/kg) A	A-T-019	N	_	378		100	-	-		
Mineral Oil (mg/kg) _A	A-T-007	N	_	30		500	_	-		
Sum of 7 PCBs (mg/kg) _A	A-T-004	N	N			1	_	-		
Sum of BTEX (mg/kg) _A	A-T-022	N	_			6	_	-		
Cam or D : Ext (mg/ttg/A	O B L A (119/Rg)A A-1-022 N I			10:1	10:1	-	s for compliance leaching	n test usina		
Eluate Analysis				mg/l	mg/kg	BS EN 12457-2 at L/S 10 l/kg (mg/kg)				
Arsenic	A-T-025	N	N	0.003	0.030	0.5	2	25		
Barium	A-T-025	N	_	0.072	0.720	20	100	300		
Cadmium	A-T-025	N	-	<0.001	<0.01	0.04	1	5		
Chromium	A-T-025	N	_		0.020	0.5	10	70		
Copper	A-T-025	N	N	0.315	3.150	2	50	100		
Mercury	A-T-025	N	N	<0.0005	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	N	Ν	0.002	0.020	0.5	10	30		
Nickel	A-T-025	N	N	0.009	0.090	0.4	10	40		
Lead	A-T-025	N	Ν	0.082	0.820	0.5	10	50		
Antimony	A-T-025	N	N	0.007	0.070	0.06	0.7	5		
Selenium	A-T-025	N	N	0.003	0.030	0.1	0.5	7		
Zinc	A-T-025	N	N	0.107	1.070	4	50	200		
Chloride	A-T-026	N	N	3	29	800	15000	25000		
Fluoride	A-T-026	N	N	0.9	9.0	10	150	500		
Sulphate as SO₄	A-T-026	N	N	20	199	1000	20000	50000		
Total Dissolved Solids	A-T-035	N	N	64	640	4000	60000	100000		
Phenol Index	A-T-050	N	N	<0.01	<0.1	1	-	•		
Dissolved Organic Carbon	A-T-032	N	Ν	<0.2	<200	500	800	1000		
Dissolved Organic Garbon					_					
Leach Test Information pH (pH Units)	A-T-031	N			J					
Leach Test Information pH (pH Units) Conductivity (µS/cm)	A-T-031 A-T-037	N N		128						
Leach Test Information pH (pH Units) Conductivity (µS/cm) Mass Sample (kg) Dry Matter (%)				128 0.206						

Sample Details										
Lab Sample ID	Method	ISO17025	MCERTS	20/07394/6	2	Landfill Waste Acceptance Criteria Limits				
Client Sample Number										
Client Sample ID				TP7 + TP8						
Depth to Top				0.5			Stable Non-reactive			
Depth to Bottom						Inert Waste Landfill	Hazardous Waste in	Hazardous Waste		
Date Sampled				26/08/2020)		Non-Hazardous Landfill	Landfill		
Sample Type				Soil - ES						
Sample Matrix Code				6ABE						
Solid Waste Analysis	•									
pH (pH Units) _D	A-T-031	N	Ν	10.84		-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	N	0.28		-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.08		-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	N	N	2.2		-	-	10		
Total Organic Carbon (%) _D	A-T-032	N	N	0.66		3	5	6		
PAH Sum of 17 (mg/kg) A	A-T-032 A-T-019	N	N	1.47		100	-	-		
Mineral Oil (mg/kg) _A	A-T-019 A-T-007	N	N	148		500	-	<u> </u>		
Sum of 7 PCBs (mg/kg) _A	A-T-007 A-T-004	N	N			1	_			
		_	!	<0.007			-	-		
Sum of BTEX (mg/kg) _A	A-T-022	N	N	<0.01		6		 		
Eluate Analysis				10:1	10:1	Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg (mg/kg)				
Arsenic	A-T-025	N	L	mg/l	mg/kg	0.5	2 2	25		
	A-T-025	N N	N N	0.009	0.090	20	100	300		
Barium Cadmium	A-T-025	N	N	0.013 <0.001	0.130 <0.01	0.04	1	5		
Chromium	A-T-025 A-T-025	N	N	0.003	0.030	0.04	10			
	A-T-025 A-T-025	N	N		0.030	0.5	50	70 100		
Copper Mercury	A-T-025	N	N	0.010 <0.0005	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	N	N			0.5	10	30		
Nickel	A-T-025	N	N	<0.001 <0.001	<0.01 <0.01	0.4	10	40		
Lead	A-T-025	N	N	0.040	0.400	0.5	10	50		
Antimony	A-T-025 A-T-025	N	N	0.040	0.020	0.06	0.7	5		
Selenium	A-T-025	N	N	<0.002	<0.020	0.00	0.5	<u></u>		
Zinc	A-T-025	N	N	0.015	0.150	4	50	200		
Chloride	A-T-025 A-T-026	N	N		11	800	15000	25000		
Fluoride	A-T-026 A-T-026	N	N	0.2	2.0	10	1500	500		
Sulphate as SO ₄	A-T-026 A-T-026	N	N	18	181	1000	20000	50000		
Total Dissolved Solids	A-T-026 A-T-035	N	N	51		4000	60000	100000		
Phenol Index	A-T-035 A-T-050	N	N		510 <0.1	4000	-	100000		
Dissolved Organic Carbon	A-T-030 A-T-032	N	N	<0.01 <0.2	<200	500	800	1000		
Leach Test Information	M-1-032	IN	IN	<0.2	<200	300	000	1000		
pH (pH Units)	A T 001	N	N	0.0	I					
Conductivity (µS/cm)	A-T-031 A-T-037	N	N	8.8 102						
Mass Sample (kg)	A-1-03/	14	H							
Dry Matter (%)	A-T-044	N	N	0.223 78.5						
Stated acceptance limits ar	e for guida	nce	onl	y and Enviro	lab cannot	be held responsible for	any discrepancies with c	current legislation		

Sample Details										
Lab Sample ID	Method	ISO17025	MCERTS	20/07394/6	3	Landfill Waste Acceptance Criteria Limits				
Client Sample Number										
Client Sample ID				TP11 + TP13						
Depth to Top				0.4			Stable Non-reactive	Hammadayya Wasta		
Depth to Bottom				0.50		Inert Waste Landfill	Hazardous Waste in	Hazardous Waste Landfill		
Date Sampled				24/08/2020			Non-Hazardous Landfill	Landini		
Sample Type				Soil - ES						
Sample Matrix Code				6AE						
Solid Waste Analysis										
pH (pH Units) _D	A-T-031	N	N	7.95		-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	Ν	Ν	0.23		-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	Ν	Ν	0.04		-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	N	N	6.7		-	-	10		
Total Organic Carbon (%) _D	A-T-032	N	N	0.61		3	5	6		
PAH Sum of 17 (mg/kg) A	A-T-019	N	N	<0.08		100	-	-		
Mineral Oil (mg/kg) _A	A-T-007	N	N	295		500	-			
Sum of 7 PCBs (mg/kg) _A	A-T-004	N	N	<0.007		1	_	-		
Sum of BTEX (mg/kg) _A	A-T-022	N	N	<0.007		6	_			
Sull of BTEX (Ilig/Rg)A	A-1-022	IN	IN		40.4	_	Limit values for compliance leaching test using			
Eluate Analysis				10:1 mg/l	10:1 mg/kg		s for compnance leaching I 12457-2 at L/S 10 l/kg (m			
Arsenic	A-T-025	N	N	0.001	0.010	0.5	2	25		
Barium	A-T-025	N	N	0.011	0.110	20	100	300		
Cadmium	A-T-025	N	N	<0.001	<0.01	0.04	1	5		
Chromium	A-T-025	N	N	0.001	0.010	0.5	10	70		
Copper	A-T-025	N	N	0.008	0.080	2	50	100		
Mercury	A-T-025	N	N	< 0.0005	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	N	N	< 0.001	<0.01	0.5	10	30		
Nickel	A-T-025	N	N	0.001	0.010	0.4	10	40		
Lead	A-T-025	N	N	0.005	0.050	0.5	10	50		
Antimony	A-T-025	N	N	<0.001	<0.01	0.06	0.7	5		
Selenium	A-T-025	N	N	0.001	0.010	0.1	0.5	7		
Zinc	A-T-025	N	N	0.008	0.080	4	50	200		
Chloride	A-T-026	N	N	4	37	800	15000	25000		
Fluoride	A-T-026	Ν	Ν	0.4	4.0	10	150	500		
Sulphate as SO ₄	A-T-026	N	Ν	22	217	1000	20000	50000		
Total Dissolved Solids	A-T-035	N	N	53	530	4000	60000	100000		
Phenol Index	A-T-050	N	N	<0.01	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	N	N	<0.2	<200	500	800	1000		
Leach Test Information						-				
pH (pH Units)	A-T-031	N	N	8.2						
Conductivity (µS/cm)	A-T-037	N								
Mass Sample (kg)			Ī	0.203						
Dry Matter (%)	A-T-044	N	N	86						
Dry Matter (%) A-T-044 N N 86										
Stated acceptance limits a	re for guida	ıce	oni	y and Enviro	nad cannot	be neia responsible for	arry discrepancies with d	current legislation		

Sample Details										
Lab Sample ID	Method	ISO17025	MCERTS	20/07394/6	4	Landfill Waste Acceptance Criteria Limits				
Client Sample Number										
Client Sample ID				TP15 +TP1	6					
Depth to Top				0.5			Stable Non-reactive			
Depth to Bottom				0.80		Inert Waste Landfill	Hazardous Waste in	Hazardous Waste Landfill		
Date Sampled				25/08/2020)		Non-Hazardous Landfill	Lundini		
Sample Type				Soil - ES						
Sample Matrix Code				5AE						
Solid Waste Analysis										
pH (pH Units) _D	A-T-031	N	N	8.72		-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	N	0.46		-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	Ν	0.07		-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	N	N	7.2		-	-	10		
Total Organic Carbon (%) _D	A-T-032	N	N	1.81		3	5	6		
PAH Sum of 17 (mg/kg) A	A-T-019	N	N	1.2		100	-	-		
Mineral Oil (mg/kg) _A	A-T-007	N	N	<10		500	-	-		
Sum of 7 PCBs (mg/kg) _A	A-T-004	N	N	<0.007		1	-	_		
Sum of BTEX (mg/kg) _A	A-T-022	N	N	<0.01		6	-	_		
	71 1 022	···	<u></u>	10:1	10:1	_	s for compliance leaching	ı test usina		
Eluate Analysis				mg/l	mg/kg		N 12457-2 at L/S 10 l/kg (mg/kg)			
Arsenic	A-T-025	N	N	<0.001	<0.01	0.5	2	25		
Barium	A-T-025	N	Ν	0.024	0.240	20	100	300		
Cadmium	A-T-025	N	Ν	< 0.001	< 0.01	0.04	1	5		
Chromium	A-T-025	N	N	<0.001	<0.01	0.5	10	70		
Copper	A-T-025	N	N	0.003	0.030	2	50	100		
Mercury	A-T-025	N	N	< 0.0005	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	N	Ν	0.008	0.080	0.5	10	30		
Nickel	A-T-025	N	Ν	< 0.001	<0.01	0.4	10	40		
Lead	A-T-025	N	N	<0.001	<0.01	0.5	10	50		
Antimony	A-T-025	N	N	0.002	0.020	0.06	0.7	5		
Selenium	A-T-025	N	N	0.005	0.050	0.1	0.5	7		
Zinc	A-T-025	N	N	0.004	0.040	4	50	200		
Chloride	A-T-026	N	N	<1.00	<10	800	15000	25000		
Fluoride	A-T-026	N	N	0.9	9.0	10	150	500		
Sulphate as SO ₄	A-T-026	N	N	72	717	1000	20000	50000		
Total Dissolved Solids	A-T-035	N	Ν	134	1340	4000	60000	100000		
Phenol Index	A-T-050	N	Ν	<0.01	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	N	N	<0.2	<200	500	800	1000		
Leach Test Information										
pH (pH Units)	A-T-031	N		8.2						
Conductivity (µS/cm)	A-T-037	N	N							
Mass Sample (kg)			_	0.214						
Dry Matter (%)	A-T-044	N	N	81.9						
Stated acceptance limits are for guidance only and Envirolab cannot be held responsible for any discrepancies with current legislation										
Stated acceptance limits a	re for guida	nce	onl	y and Enviro	olab cannot	be held responsible for	any discrepancies with o	current legislation		

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/07494

Issue Number: 1 **Date:** 21 September, 2020

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Andrew Kent

Project Name: North London Business Park

Project Ref: 1921321 Order No: N/A

Date Samples Received:28/08/20Date Instructions Received:08/09/20Date Analysis Completed:18/09/20

Prepared by: Approved by:

Sophie France

Client Service Manager

Danielle Brierley Client Manager

				Onem 110	ject Kei. 19			
Lab Sample ID	20/07494/1	20/07494/2	20/07494/3					
Client Sample No								
Client Sample ID	BH4	ВН6	ВН7					
Depth to Top	0.75	0.50	1.50					
Depth To Bottom							ion	
Date Sampled	02-Sep-20	21-Aug-20	02-Sep-20				etect	بيو
Sample Type	Soil - ES	Soil - ES	Soil - ES			_ ا	Limit of Detection	Method ref
Sample Matrix Code	6ABE	6AE	6AE			Units	Limit	Meth
% Stones >10mm _A	8.6	7.9	19.0			% w/w	0.1	A-T-044
pH _D ^{M#}	8.38	6.73	10.12			рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.05	0.02	0.45			g/l	0.01	A-T-026s
Sulphate (acid soluble) _D M#	610	430	3500			mg/kg	200	A-T-028s
Arsenic _D ^{M#}	5	<1	3			mg/kg	1	A-T-024s
Cadmium _D ^{M#}	0.7	<0.5	0.6			mg/kg	0.5	A-T-024s
Copper _D ^{M#}	159	93	170			mg/kg	1	A-T-024s
Chromium _D ^{M#}	37	34	45			mg/kg	1	A-T-024s
Lead _D ^{M#}	139	77	180			mg/kg	1	A-T-024s
Mercury₀	0.80	0.60	0.82			mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	34	18	45			mg/kg	1	A-T-024s
Selenium _D ^{M#}	2	2	2			mg/kg	1	A-T-024s
Zinc _D ^{M#}	164	85	165			mg/kg	5	A-T-024s

	l		l	l	l	l			
Lab Sample ID	20/07494/1	20/07494/2	20/07494/3						
Client Sample No									
Client Sample ID	BH4	ВН6	ВН7						
Depth to Top	0.75	0.50	1.50						
Depth To Bottom								ion	
Date Sampled	02-Sep-20	21-Aug-20	02-Sep-20					Detection	*
Sample Type	Soil - ES	Soil - ES	Soil - ES				,	of D	Method ref
Sample Matrix Code	6ABE	6AE	6AE				Units	Limit of	Meth
Asbestos in Soil (inc. matrix) ^									
Asbestos in soil _D #	NAD	NAD	NAD						A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A	N/A						A-T-045

				Ciletit F10	ject Ref: 19	21321			
Lab Sample ID	20/07494/1	20/07494/2	20/07494/3						
Client Sample No									
Client Sample ID	BH4	ВН6	ВН7						
Depth to Top	0.75	0.50	1.50						
Depth To Bottom								ion	
Date Sampled	02-Sep-20	21-Aug-20	02-Sep-20					etect	*
Sample Type	Soil - ES	Soil - ES	Soil - ES				,	Limit of Detection	Method ref
Sample Matrix Code	6ABE	6AE	6AE				Units	Limi	Meth
PAH-16MS									
Acenaphthene _A ^{M#}	<0.01	<0.01	0.05				mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	0.02	<0.01	0.02				mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	0.08	<0.02	0.09				mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.51	<0.04	0.26				mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.48	<0.04	0.28				mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.59	<0.05	0.32				mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.31	<0.05	0.18				mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.22	<0.07	0.12				mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.53	<0.06	0.28				mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.08	<0.04	0.05				mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.93	<0.08	0.49				mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	0.02	<0.01	0.04				mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.40	<0.03	0.25				mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03				mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.27	<0.03	0.29				mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	0.80	<0.07	0.45				mg/kg	0.07	A-T-019s
Total PAH-16MS _A M#	5.24	<0.08	3.17				mg/kg	0.01	A-T-019s

Envirolab Job Number: 20/07494 Client Project Name: North London Business Park

Client Project Ref: 1921321

				Client Pro	ject Ref: 19	21321			
Lab Sample ID	20/07494/1	20/07494/2	20/07494/3						
Client Sample No									
Client Sample ID	ВН4	ВН6	ВН7						
Depth to Top	0.75	0.50	1.50						
Depth To Bottom								ion	
Date Sampled	02-Sep-20	21-Aug-20	02-Sep-20					etect	<u>ب</u>
Sample Type	Soil - ES	Soil - ES	Soil - ES					of D	od re
Sample Matrix Code	6ABE	6AE	6AE				Units	Limit of Detection	Method ref
TPH CWG									
Ali >C5-C6 _A #	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	<1	<1				mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	<1	<1	<1				mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	<1	<1	3				mg/kg	1	A-T-055s
Ali >C16-C21 _A M#	2	<1	7				mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	15	2	15				mg/kg	1	A-T-055s
Total Aliphatics _A	18	2	25				mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-022s
Aro >C8-C10A	<1	<1	3				mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1	<1	<1				mg/kg	1	A-T-055s
Aro >C12-C16 _A	4	<1	3				mg/kg	1	A-T-055s
Aro >C16-C21 _A M#	41	<1	7				mg/kg	1	A-T-055s
Aro >C21-C35 _A M#	141	7	23				mg/kg	1	A-T-055s
Total Aromatics _A	186	7	35				mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)A	203	9	60				mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01	0.07				mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01	0.02				mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	<0.01	<0.01				mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

20/07494

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead, Project No:

Hertfordshire, UK, HP3 9RT

Date Received: 08/09/2020 (am)

Project: North London Business Park Cool Box Temperatures (°C): 16.9

Clients Project No: 1921321

Lab Sample ID	20/07494/2
Client Sample No	
Client Sample ID/Depth	BH6 0.50m
Date Sampled	21/08/20
Deviation Code	
F	✓

Key

Maximum holding time exceeded between sampling date and analysis for analytes listed below

HOLDING TIME EXCEEDANCES

Lab Sample ID	20/07494/2
Client Sample No	
Client Sample ID/Depth	BH6 0.50m
Date Sampled	21/08/20
PAH-16MS	✓
VPHCWG	✓

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/08234

Issue Number: 1 **Date:** 15 October, 2020

Client: RSK Environment Ltd Hemel

18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Andrew Kent

Project Name: North London Business Park (N.L.B.P)

Project Ref: 1921321 Order No: N/A

Date Samples Received:29/09/20Date Instructions Received:29/09/20Date Analysis Completed:15/10/20

Prepared by: Approved by:

Melanie Marshall Laboratory Coordinator

Richard Wong Client Manager

Envirolab Job Number: 20/08234 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

Lab Sample ID	20/08234/1	20/08234/2	20/08234/3	20/08234/4	20/08234/5	20/08234/6	20/08234/7			
Client Sample No	17	18	9	23	5	19	29			
Client Sample ID	BH1	BH2	внз	внз	BH4	BH4	BH4			
Depth to Top	10.50	11.00	4.50	15.00	1.60	9.00	15.00			
Depth To Bottom	11.00	11.50	5.00	15.50	2.00	9.50	15.50		ion	
Date Sampled	19-Aug-20	17-Aug-20	13-Aug-20	13-Aug-20	02-Sep-20	02-Sep-20	02-Sep-20		Limit of Detection	±.
Sample Type	Soil	,	t of D	Method ref						
Sample Matrix Code	5AE	5A	5AE	5A	5AE	5A	5AE	Units	Limi	Meth
% Stones >10mm _A	39.4	21.7	20.0	19.3	7.8	34.8	21.2	% w/w	0.1	A-T-044
pH BRE _D M#	8.10	8.42	7.86	8.00	8.46	8.64	7.94	pН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D M#	1270	165	2370	2330	124	72	1840	mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	0.36	0.05	1.38	0.76	0.05	0.03	0.51	% w/w	0.02	A-T-028s
Sulphur BRE (total) _D	0.12	0.04	0.47	0.50	0.03	0.03	0.17	% w/w	0.01	A-T-024s

Envirolab Job Number: 20/08234 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

Lab Sample ID	20/08234/8	20/08234/9	20/08234/10	20/08234/11	20/08234/12	20/08234/13	20/08234/14			
Client Sample No	18	32	6	12	22	5	9			
Client Sample ID	BH5	BH5	ВН6	ВН6	ВН6	ВН7	ВН7			
Depth to Top	10.50	21.00	2.50	6.00	13.50	3.50	6.00			
Depth To Bottom	11.00	21.50	3.00	6.50	14.00	4.00	6.50		ion	
Date Sampled	25-Aug-20	25-Aug-20	21-Aug-20	24-Aug-20	24-Aug-20	02-Sep-20	02-Sep-20		Detection	5
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	, n	t of D	od ref
Sample Matrix Code	5A	5AE	5AE	5A	5AE	5A	5AE	Units	Limit of	Method
% Stones >10mm _A	2.0	26.9	35.1	37.4	16.3	33.8	26.4	% w/w	0.1	A-T-044
pH BRE _D ^{M#}	7.79	8.23	8.14	8.05	8.39	8.06	7.74	рН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D M#	2070	1200	232	1700	937	106	1940	mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	1.26	0.17	0.07	0.61	0.29	0.03	1.41	% w/w	0.02	A-T-028s
Sulphur BRE (total)D	0.52	0.38	0.05	0.28	0.40	0.02	0.70	% w/w	0.01	A-T-024s

Envirolab Job Number: 20/08234 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

Lab Sample ID	20/08234/15	20/08234/16	20/08234/17	20/08234/18	20/08234/19	20/08234/20	20/08234/21			
Client Sample No	27	11	25	5	5	11	3			
Client Sample ID	ВН7	ВН8	ВН8	BH1	BH1	BH1	BH2			
Depth to Top	19.50	6.00	16.50	2.50	2.70	6.00	1.50			
Depth To Bottom	20.00	6.50	17.00	3.00	3.00	6.50	2.00		ion	
Date Sampled	02-Sep-20	27-Aug-20	28-Aug-20						Limit of Detection	±.
Sample Type	Soil		t of D	Method ref						
Sample Matrix Code	5A	Units	Limi	Meth						
% Stones >10mm _A	24.9	20.6	22.8	25.9	25.7	25.5	20.3	% w/w	0.1	A-T-044
pH BRE _D M#	8.02	8.32	7.81	7.85	8.43	8.27	8.38	рН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D M#	879	2060	2190	978	416	1710	772	mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	0.20	1.19	0.42	0.16	0.06	0.43	0.13	% w/w	0.02	A-T-028s
Sulphur BRE (total) _D	0.38	0.52	0.31	0.41	0.04	0.18	0.27	% w/w	0.01	A-T-024s

Envirolab Job Number: 20/08234 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

Lab Sample ID	20/08234/22	20/08234/23	20/08234/24					
Client Sample No	7	6	7					
Client Sample ID	BH2	BH5	ВН8					
Depth to Top	3.50	2.50	3.50					
Depth To Bottom	4.00	3.00	4.00				ion	
Date Sampled							Detection	*
Sample Type	Soil	Soil	Soil			,	of O	Method ref
Sample Matrix Code	5A	5A	5A			Units	Limit	Meth
% Stones >10mm _A	23.5	20.6	17.0			% w/w	0.1	A-T-044
pH BRE _D M#	8.67	8.56	8.15			рН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D M#	450	430	1220			mg/l	10	A-T-026s
Sulphate BRE (acid sol) _D M#	0.08	0.07	0.32			% w/w	0.02	A-T-028s
Sulphur BRE (total)D	0.04	0.03	0.24			% w/w	0.01	A-T-024s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25 °C / 11550μS/cm @ 20 °C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead, Project No.

Hertfordshire, UK, HP3 9RT

Project: North London Business Park (N.L.B.P)

Clients Project No: 1921321

Project No: 20/08234

Date Received: 29/09/2020 (am)

Cool Box Temperatures (°C): 10.4, 11.6, 10.8, 11.2

Lab Sample ID	20/08234/1	20/08234/2	20/08234/3	20/08234/4	20/08234/5	20/08234/6	20/08234/7	20/08234/8	20/08234/9	20/08234/10	20/08234/11
Client Sample No	17	18	9	23	5	19	29	18	32	6	12
Client Sample ID/Depth	BH1 10.50- 11.00m	BH2 11.00- 11.50m	BH3 4.50- 5.00m	BH3 15.00- 15.50m	BH4 1.60- 2.00m	BH4 9.00- 9.50m	BH4 15.00- 15.50m	BH5 10.50- 11.00m	BH5 21.00- 21.50m	BH6 2.50- 3.00m	BH6 6.00- 6.50m
Date Sampled	19/08/20	17/08/20	13/08/20	13/08/20	02/09/20	02/09/20	02/09/20	25/08/20	25/08/20	21/08/20	24/08/20
Deviation Code											
E (no date)											
F	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Lab Sample ID	20/08234/12	20/08234/13	20/08234/14	20/08234/15	20/08234/16	20/08234/17	20/08234/18	20/08234/19	20/08234/20	20/08234/21	20/08234/22
Client Sample No	22	5	9	27	11	25	5	5	11	3	7
Client Sample ID/Depth	BH6 13.50- 14.00m	BH7 3.50- 4.00m	BH7 6.00- 6.50m	BH7 19.50- 20.00m	BH8 6.00- 6.50m	BH8 16.50- 17.00m	BH1 2.50- 3.00m	BH1 2.70- 3.00m	BH1 6.00- 6.50m	BH2 1.50- 2.00m	BH2 3.50- 4.00m
Date Sampled	24/08/20	02/09/20	02/09/20	02/09/20	27/08/20	28/08/20					
Deviation Code											
E (no date)							✓	✓	✓	✓	✓
F	✓	✓	✓	✓	✓	✓					

Lab Sample ID	20/08234/23	20/08234/24
Client Sample No	6	7
Client Sample ID/Depth	BH5 2.50- 3.00m	BH8 3.50- 4.00m
Date Sampled		
Deviation Code		
E (no date)	✓	✓
F		

Key

E (no date) No sampling date provided (all results affected if not provided)

HOLDING TIME EXCEEDANCES

Lab Sample ID	20/08234/1	20/08234/2	20/08234/3	20/08234/4	20/08234/5	20/08234/6	20/08234/7	20/08234/8	20/08234/9	20/08234/10	20/08234/11
Client Sample No	17	18	9	23	5	19	29	18	32	6	12
Client Sample ID/Depth	BH1 10.50- 11.00m	BH2 11.00- 11.50m	BH3 4.50- 5.00m	BH3 15.00- 15.50m	BH4 1.60- 2.00m	BH4 9.00- 9.50m	BH4 15.00- 15.50m	BH5 10.50- 11.00m	BH5 21.00- 21.50m	BH6 2.50- 3.00m	BH6 6.00- 6.50m
Date Sampled	19/08/20	17/08/20	13/08/20	13/08/20	02/09/20	02/09/20	02/09/20	25/08/20	25/08/20	21/08/20	24/08/20
Sulphate BRE (water sol 2:1)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Sulphate BRE (acid sol)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Lab Sample ID	20/08234/12	20/08234/13	20/08234/14	20/08234/15	20/08234/16	20/08234/17
Client Sample No	22	5	9	27	11	25
Client Sample ID/Depth	BH6 13.50- 14.00m	BH7 3.50- 4.00m	BH7 6.00- 6.50m	BH7 19.50- 20.00m	BH8 6.00- 6.50m	BH8 16.50- 17.00m
Date Sampled	24/08/20	02/09/20	02/09/20	02/09/20	27/08/20	28/08/20
Sulphate BRE (water sol 2:1)	✓	✓	✓	✓	✓	✓
Sulphate BRE (acid sol)	✓	✓	✓	✓	✓	✓

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

APPENDIX K LABORATORY CERTIFICATES FOR GEOTECHNICAL ANALYSIS

STRUCTURAL SOILS LTD **TEST REPORT**

Report No. 584350-01 (00)

Date 03-December-2020 Contract North London Business Park

Client **RSK**

Address 18 Frogmore Rd

Apsley

Hemel Hempstead Hertfordshire HP3 9RT

For the Attention of Alex Marcelo

Samples submitted by client Client Reference 22-September-2020 1921321 Testing Started 29-September-2020 Client Order No. n/a **Testing Completed** Instruction Type 02-December-2020 Written

Tests marked 'Not UKAS Accredited' in this report are not included in the UKAS Accreditation Schedule for our Laboratory.

UKAS Accredited Tests

1.01	Moisture Content (oven drying method) BS1377:Part 2:1990:clause 3.2 (superseded)*
1.03	Liquid Limit (one point method) & Plastic Limit BS1377:Part 2:1990,clause 4.4/5.3 (superseded)*
4.01	One-dimensional consolidation BS1377:Part 5:1990,clause 3.5 (superseded)*
4.04	Swelling test RS1377:Part 5:1990 clause 4.4

5.04 Undrained shear strength triaxial compression without pore pressure measurement

(definitive method) 100mm diameter specimens BS1377:Part 7:1990,clause 8.4 (superseded)*

Please Note: Remaining samples will be retained for a period of one month from today and will then be disposed of .

Test were undertaken on samples 'as received' unless otherwise stated.

Opinions and interpretations expressed in this report are outside the scope of accreditation for this laboratory.

Structural Soils Ltd 18 Frogmore Rd Hemel Hempstead HP3 9RT Tel.01442 416661 e-mail dimitris.xirouchakis@soils.co.uk

This clause of BS1377 is no longer the most up to date method due to the publication of ISO17892

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07_0 I GricText L - LAB VERIFICATION REPORT - V02 - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Solis Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Herfordshire, HP3 9RT. Tel: 01442 262323, Fax: 01442 262683, Web: www.solis.co.uk, Email: ask@solis.co.uk, | 14/10/20 - 14:22 | SC1 |

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **14/10/2020 13:48:44**.

Testing reported after this date is not covered by this Verification Certificate.

56

Approved Signatory

Sharon Cairns (Laboratory Manager)

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

STRUCTURAL SOILS LTD

Contract:

Job No:

North London Buisness Park (N.L.B.P)

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PryVersion: v8_07 | GrGTextL-LAB VERIFICATION REPORT - V02 - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Solis Ltd, Branch Office - Hemel Hempslead: 18 Frogmore Road, Hemel Hempslead, Hertfordshire, HP3 9RT. Tel: 01442 262323, Fax: 01442 262863, Web: www.solis.co.uk, Email: ask@solis.co.uk, I 03/12/20 - 10:37 | AF3

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **03/12/2020 10:36:39**.

Testing reported after this date is not covered by this Verification Certificate.

A.S. fre

Approved Signatory **Alan Frost (Data Quality Manager)**

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

STRUCTURAL SOILS LTD

Contract:

Job No:

North London Business Park (N.L.B.P)

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425 µ m	Description of Sample		
BH1	9	D	4.50	34	74	24	50	100	Brown CLAY		
BH2	5	В	2.30	36	70	24	46	97	Brown slightly gravelly CLAY		
BH3	11	D	6.00	29	74	23	51	99	Brown CLAY with some gypsum		
ВН3	21	D	13.50	34	70	23	47	100	Brown CLAY		
BH4	7	В	2.50	34	72	25	47	99	Brown mottled orange slightly gravelly CLAY		
BH4	26	В	13.50	30	69	23	46	85	Brown slightly gravelly CLAY		
BH5	5	В	2.20	33	66	22	44	70	Brown mottled dark grey slightly gravelly organic CLAY		
BH6	10	D	4.50	30	74	25	49	98	Brown mottled grey CLAY with some gypsum		

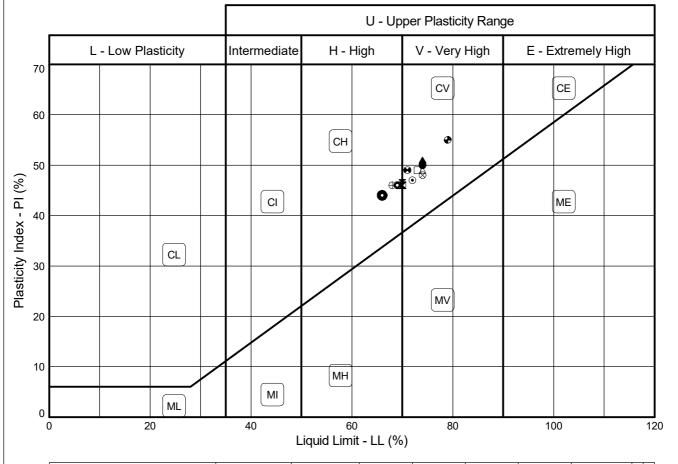
Contract: Contract Ref:

North London Buisness Park (N.L.B.P)

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425 µ m	Description of Sample		
ВН6	26	D	16.50	30	74	26	48	100	Brown CLAY		
BH7	3	D	2.40	32	68	22	46	99	Brown mottled light grey slightly sandy CLAY		
BH7	11	D	7.50	31	73	24	49	98	Brown CLAY		
BH8	5	В	2.00	30	71	22	49	100	Brown mottled red CLAY with occasional man-made material		
BH8	29	D	19.50	32	79	24	55	100	Brown CLAY		
TP1		D	1.00	28	73	23	50	98	Brown mottled dark grey and orange slightly sandy slightly gravelly CLAY		


Contract: Contract Ref:

North London Buisness Park (N.L.B.P)

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07_1 Graph L - ALINE STANDARD - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Solis Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 262323, Fax: 01442 262683, Web: www.solis.co.uk, Email: ask@solis.co.uk, | 14/10/20 - 13:49 | SC1 |

PLASTICITY CHART - PI Vs LL In accordance with BS5930:2015 Testing in accordance with BS1377-2:1990

	Sample Identification		ion	BS Test	Preparation	МС	LL	PL	PI	<425 µ m	location Notes
	Exploratory Position ID	Sample	Depth (m)	Method #	Method +	%	%	%	%	%	Lab location Notes
	BH1	9D	4.50	3.2/4.4/5.3/5.4	4.2.4	34	74	24	50	100	Н
	BH2	5B	2.30	3.2/4.4/5.3/5.4	4.2.4	36	70	24	46	97	Н
lack	BH3	11D	6.00	3.2/4.4/5.3/5.4	4.2.4	29	74	23	51	99	Н
*	BH3	21D	13.50	3.2/4.4/5.3/5.4	4.2.4	34	70	23	47	100	Н
•	BH4	7B	2.50	3.2/4.4/5.3/5.4	4.2.4	34	72	25	47	99	Н
O	BH4	26B	13.50	3.2/4.4/5.3/5.4	4.2.4	30	69	23	46	85	Н
0	BH5	5B	2.20	3.2/4.4/5.3/5.4	4.2.4	33	66	22	44	70	Н
Δ	BH6	10D	4.50	3.2/4.4/5.3/5.4	4.2.4	30	74	25	49	98	Н
\otimes	BH6	26D	16.50	3.2/4.4/5.3/5.4	4.2.4	30	74	26	48	100	Н
\oplus	BH7	3D	2.40	3.2/4.4/5.3/5.4	4.2.4	32	68	22	46	99	Н
	BH7	11D	7.50	3.2/4.4/5.3/5.4	4.2.4	31	73	24	49	98	Н
0	BH8	5B	2.00	3.2/4.4/5.3/5.4	4.2.4	30	71	22	49	100	Н
•	BH8	29D	19.50	3.2/4.4/5.3/5.4	4.2.3	32	79	24	55	100	Н

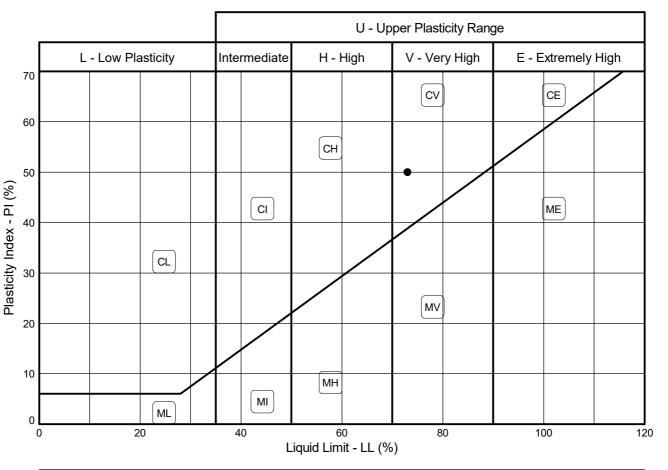
Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method
- 5.3 Plastic Limit Method 5.4 Plasticity Index

- + Tested in accordance with the following clauses of BS1377-2:1990.
- 4.2.3 Natural State
- 4.2.4 Wet Sieved

Key: * = Non-standard test, NP = Non plastic.

Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)


STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

	Cor	npiled By	piled By				
	56-		SHARON CAIRNS	14/10/20			
Contract			Contract Ref				

North London Buisness Park (N.L.B.P)

PLASTICITY CHART - PI Vs LL In accordance with BS5930:2015 Testing in accordance with BS1377-2:1990

	Sample Identification			BS Test	Preparation	MC	LL	PL	PI	<425 µ m	Lab location Notes
	Exploratory Position ID	Sample	Depth (m)	Method #	Preparation Method +	%	%	%	%	%	Lab lo
•	TP1	D	1.00	3.2/4.4/5.3/5.4	4.2.4	28	73	23	50	98	Н
											Ш
											Ш
											Ш
											ш
											₩
											₩
											₩
											+
											++
											++
											Ш

Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method
- 5.3 Plastic Limit Method 5.4 Plasticity Index

- + Tested in accordance with the following clauses of BS1377-2:1990.
- 4.2.3 Natural State
- 4.2.4 Wet Sieved

Key: * = Non-standard test, NP = Non plastic.

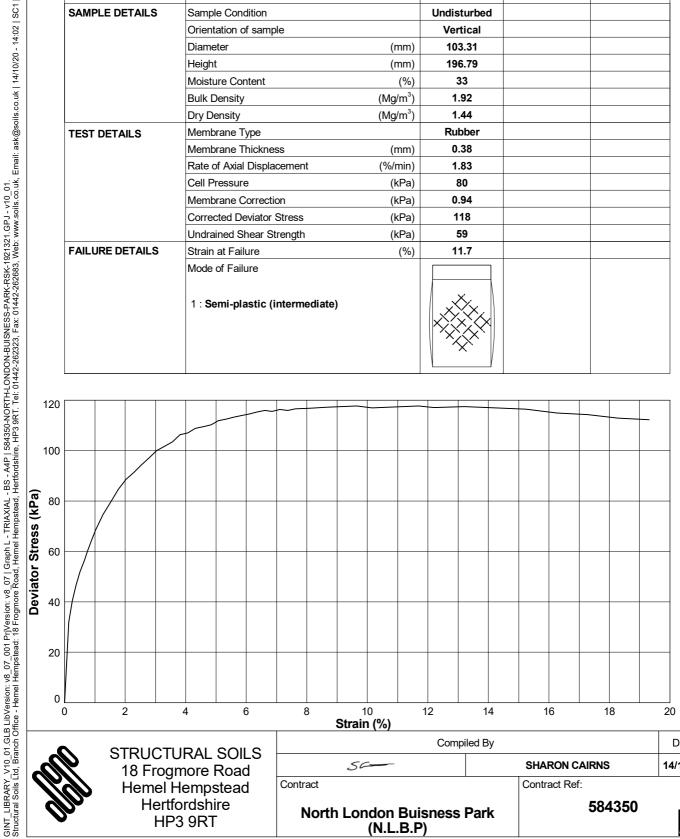
Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07_1 Graph L - ALINE STANDARD - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01.
Structural Solis Lid, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 262323, Fax: 01442 262683, Web: www.solis.co.uk, Email: ask@solis.co.uk, | 14/10/20 - 13:49 | SC1 |

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date **SHARON CAIRNS** 14/10/20 50 Contract Contract Ref:

North London Buisness Park (N.L.B.P)



In accordance with BS1377 Part 7 Clause 8

Borehole: BH1 Sample Ref: 8 Sample Type: U Depth (m): 4.00

Description: Brown mottled orangish brown and light grey CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.31		
	Height	(mm)	196.79		
	Moisture Content	(%)	33		
	Bulk Density	(Mg/m ³)	1.92		
	Dry Density	(Mg/m ³)	1.44		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement (%		1.83		
	Cell Pressure	(kPa)	80		
	Membrane Correction	(kPa)	0.94		
	Corrected Deviator Stress	(kPa)	118		
	Undrained Shear Strength	(kPa)	59		
FAILURE DETAILS	Strain at Failure	(%)	11.7		
	Mode of Failure 1 : Semi-plastic (intermediate)				

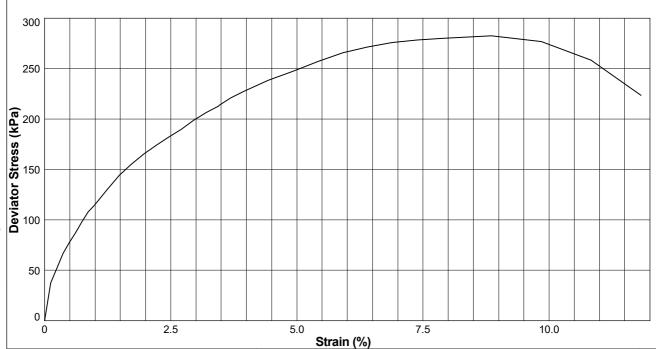
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

North London Buisness Park (N.L.B.P)

Contract Ref:



In accordance with BS1377 Part 7 Clause 8

Borehole: **BH1** Sample Ref: **20** Sample Type: **U** Depth (m): **12.50**

Description: Brown slightly sandy CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.28		
	Height	(mm)	203.07		
	Moisture Content	(%)	26		
	Bulk Density	(Mg/m ³)	2.00		
	Dry Density	(Mg/m³)	1.58		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.20		
	Rate of Axial Displacement	(%/min)	1.28		
	Cell Pressure	(kPa)	250		
	Membrane Correction	(kPa)	0.40		
	Corrected Deviator Stress	(kPa)	283		
	Undrained Shear Strength	(kPa)	141		
FAILURE DETAILS	Strain at Failure	(%)	8.9		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Compiled By Date

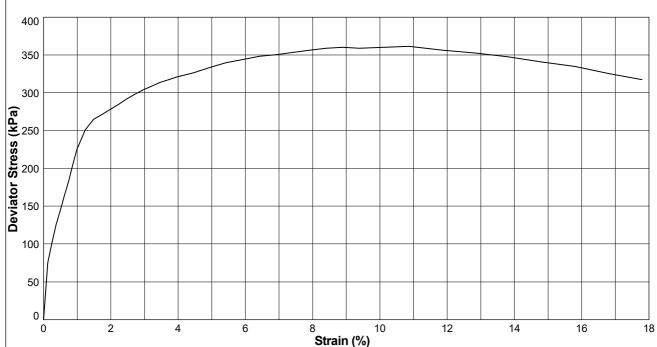
SHARON CAIRNS 14/10/20

Contract

North London Buisness Park (N.L.B.P)

584350

Contract Ref:



In accordance with BS1377 Part 7 Clause 8

Borehole: **BH1** Sample Ref: **44** Sample Type: **U** Depth (m): **30.50**

Description: Red mottled light grey CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.69		
	Height	(mm)	202.40		
	Moisture Content	(%)	24		
	Bulk Density	(Mg/m ³)	2.04		
	Dry Density	(Mg/m ³)	1.65		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement	(%/min)	1.09		
	Cell Pressure	(kPa)	610		
	Membrane Correction	(kPa)	0.90		
	Corrected Deviator Stress	(kPa)	361		
	Undrained Shear Strength	(kPa)	181		
FAILURE DETAILS	Strain at Failure	(%)	10.9		
	Mode of Failure 1 : Brittle (shear plane)				

STRUC 18 Fro Heme Her

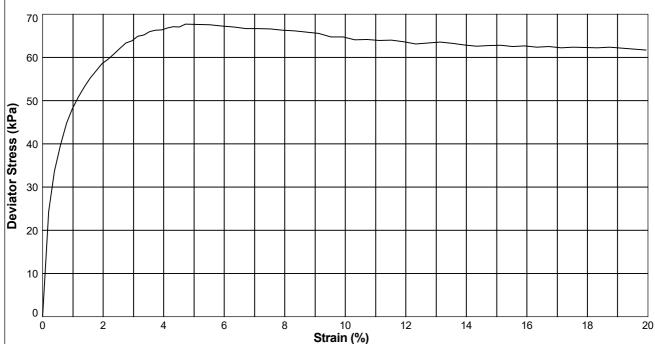
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT
 Compiled By
 Date

 SHARON CAIRNS
 14/10/20

Contract

North London Buisness Park (N.L.B.P)

Contract Ref:



In accordance with BS1377 Part 7 Clause 8

Borehole: **BH2** Sample Ref: **6** Sample Type: **U** Depth (m): **3.23**

Description: Light brown mottled orange and black CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.19		
	Height	(mm)	201.06		
	Moisture Content	(%)	40		
	Bulk Density (M	lg/m³)	1.81		
	Dry Density (M	lg/m³)	1.30		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.25		
	Rate of Axial Displacement (%	/min)	1.34		
	Cell Pressure	(kPa)	60		
	Membrane Correction	(kPa)	0.31		
	Corrected Deviator Stress	(kPa)	68		
	Undrained Shear Strength	(kPa)	34		
FAILURE DETAILS	Strain at Failure	(%)	4.7		
	Mode of Failure 1 : Semi-plastic (bulging, shear & axial splitting)				

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

D. Mues

North London Business Park

(N.L.B.P)

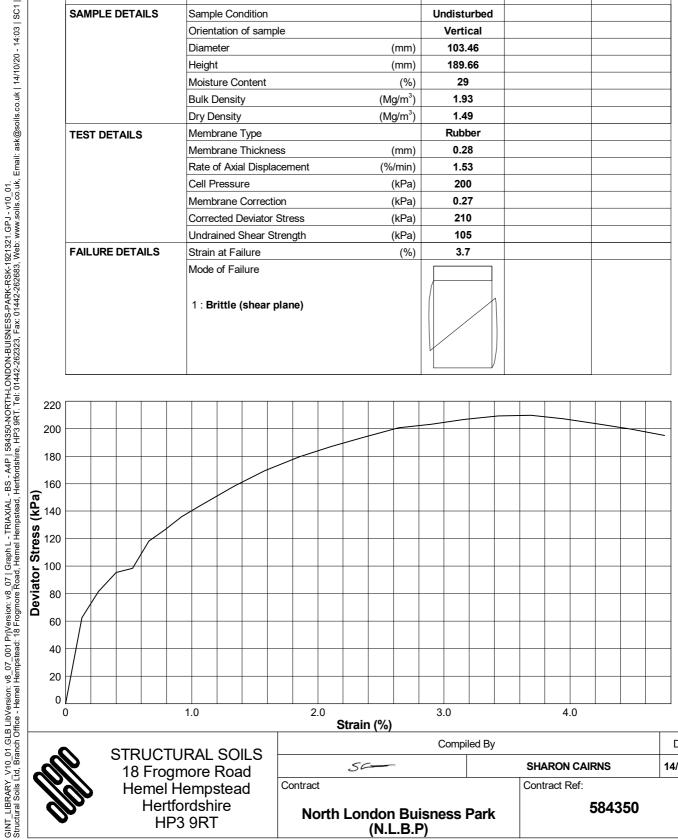
Date

DAISY RICHARDS 30/11/20

Contract

Contract Ref:

Compiled By


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE)

TRIAXIAL COMPRESSION TEST In accordance with BS1377 Part 7 Clause 8

Borehole: BH2 17 Sample Ref: Sample Type: Depth (m): 10.00

Description: Brown mottled orange CLAY with some gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.46		
	Height	(mm)	189.66		
	Moisture Content	(%)	29		
	Bulk Density	(Mg/m³)	1.93		
	Dry Density	(Mg/m ³)	1.49		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.28		
	Rate of Axial Displacement	(%/min)	1.53		
	Cell Pressure	(kPa)	200		
	Membrane Correction	(kPa)	0.27		
	Corrected Deviator Stress	(kPa)	210		
	Undrained Shear Strength	(kPa)	105		
FAILURE DETAILS	Strain at Failure	(%)	3.7		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

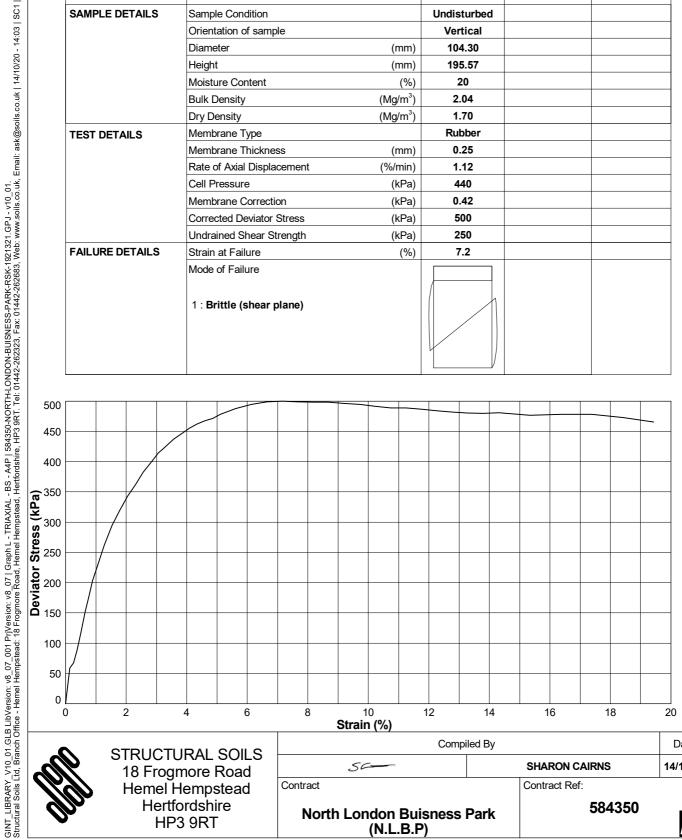
Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

North London Buisness Park

Contract Ref:

584350


(N.L.B.P)

In accordance with BS1377 Part 7 Clause 8

Borehole: BH2 33 Sample Ref: Sample Type: U Depth (m): 22.00

Description: Dark brown slightly sandy CLAY with possible gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	104.30		
	Height	(mm)	195.57		
	Moisture Content	(%)	20		
	Bulk Density	(Mg/m ³)	2.04		
	Dry Density	(Mg/m ³)	1.70		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.25		
	Rate of Axial Displacement	(%/min)	1.12		
	Cell Pressure	(kPa)	440		
	Membrane Correction	(kPa)	0.42		
	Corrected Deviator Stress	(kPa)	500		
	Undrained Shear Strength	(kPa)	250		
FAILURE DETAILS	Strain at Failure	(%)	7.2		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

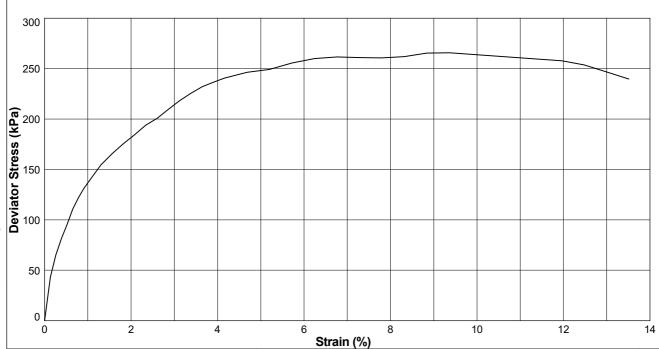
Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

Contract Ref:

584350

(N.L.B.P) 584350 01 (00) 13 of 37


North London Buisness Park

In accordance with BS1377 Part 7 Clause 8

Borehole: **BH3** Sample Ref: **16** Sample Type: **U** Depth (m): **9.50**

Description: Brown slightly sandy CLAY with some gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	104.02		
	Height	(mm)	192.38		
	Moisture Content	(%)	24		
	Bulk Density	(Mg/m ³)	1.97		
	Dry Density	(Mg/m ³)	1.59		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.24		
	Rate of Axial Displacement	(%/min)	1.40		
	Cell Pressure	(kPa)	190		
	Membrane Correction	(kPa)	0.50		
	Corrected Deviator Stress	(kPa)	266		
	Undrained Shear Strength	(kPa)	133		
FAILURE DETAILS	Strain at Failure	(%)	9.4		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS
18 Frogmore Road
Hemel Hempstead
Hertfordshire
HP3 9RT

Compiled By Date

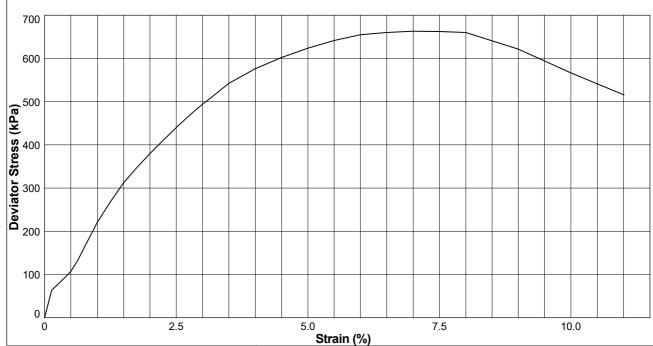
SHARON CAIRNS 14/10/20

Contract

North London Buisness Park (N.L.B.P)

584350

Contract Ref:


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE)

TRIAXIAL COMPRESSION TEST In accordance with BS1377 Part 7 Clause 8

Borehole: BH3 32 Sample Ref: Sample Type: **U** Depth (m): 21.50

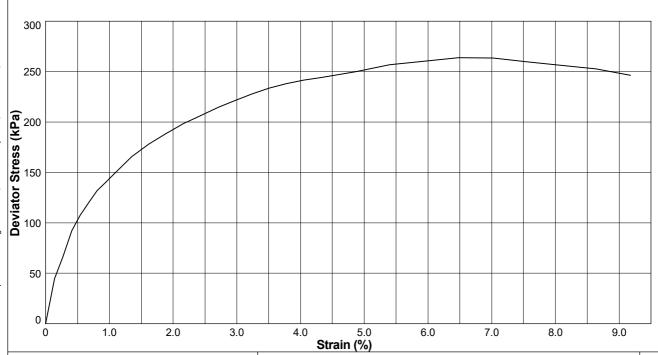
Description: Brown slightly sandy CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.91		
	Height	(mm)	199.90		
	Moisture Content	(%)	23		
	Bulk Density	(Mg/m³)	2.02		
	Dry Density	(Mg/m³)	1.64		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement	(%/min)	1.30		
	Cell Pressure	(kPa)	430		
	Membrane Correction	(kPa)	0.64		
	Corrected Deviator Stress	(kPa)	663		
	Undrained Shear Strength	(kPa)	331		
FAILURE DETAILS	Strain at Failure	(%)	7.0		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50 Contract Ref:

Contract


North London Buisness Park (N.L.B.P)

In accordance with BS1377 Part 7 Clause 8

Borehole: BH4 17 Depth (m): Sample Ref: Sample Type: 8.00

Description: Brown mottled orange CLAY with some gypsum

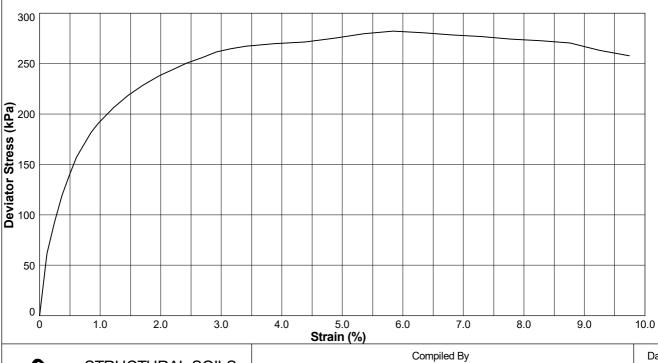
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	102.10		
	Height	(mm)	185.09		
	Moisture Content	(%)	27		
	Bulk Density	(Mg/m ³)	1.90		
	Dry Density	(Mg/m ³)	1.49		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement	(%/min)	1.62		
	Cell Pressure	(kPa)	160		
	Membrane Correction	(kPa)	0.61		
	Corrected Deviator Stress	(kPa)	264		
	Undrained Shear Strength	(kPa)	132		
FAILURE DETAILS	Strain at Failure	(%)	6.5		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50 Contract

Contract Ref:

North London Buisness Park (N.L.B.P)



In accordance with BS1377 Part 7 Clause 8

Borehole: BH4 32 Sample Ref: Sample Type: **U** Depth (m): 17.00

Description: Brown slightly sandy CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.56		
	Height	(mm)	205.41		
	Moisture Content	(%)	25		
	Bulk Density	(Mg/m³)	2.00		
	Dry Density	(Mg/m ³)	1.60		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.42		
	Rate of Axial Displacement	(%/min)	1.17		
	Cell Pressure	(kPa)	340		
	Membrane Correction	(kPa)	0.61		
	Corrected Deviator Stress	(kPa)	282		
	Undrained Shear Strength	(kPa)	141		
FAILURE DETAILS	Strain at Failure	(%)	5.8		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS

18 Frogmore Road

Hemel Hempstead Hertfordshire

HP3 9RT

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 Pryversion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01.
Structural Soils Litd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 14/10/20 - 14:03 | SC1 |

North London Buisness Park (N.L.B.P)

Contract Ref:

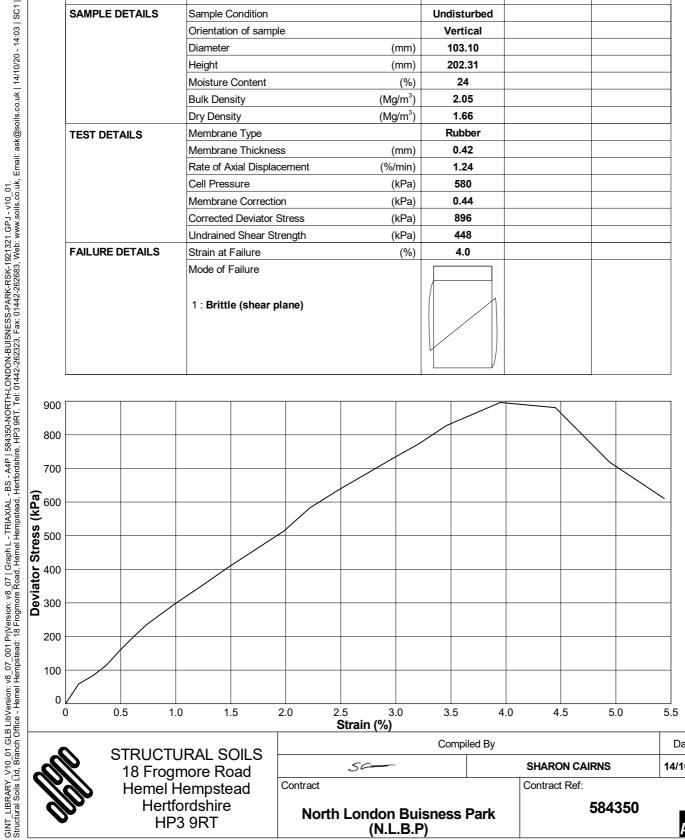
SHARON CAIRNS

584350

Date

14/10/20

50


Contract

In accordance with BS1377 Part 7 Clause 8

Borehole: BH4 52 Sample Ref: Sample Type: **U** Depth (m): 29.00

Description: Brown mottled grey slightly sandy CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.10		
	Height	(mm)	202.31		
	Moisture Content	(%)	24		
	Bulk Density	(Mg/m ³)	2.05		
	Dry Density	(Mg/m ³)	1.66		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.42		
	Rate of Axial Displacement	(%/min)	1.24		
	Cell Pressure	(kPa)	580		
	Membrane Correction	(kPa)	0.44		
	Corrected Deviator Stress	(kPa)	896		
	Undrained Shear Strength	(kPa)	448		
FAILURE DETAILS	Strain at Failure	(%)	4.0		
	Mode of Failure 1 : Brittle (shear plane)				

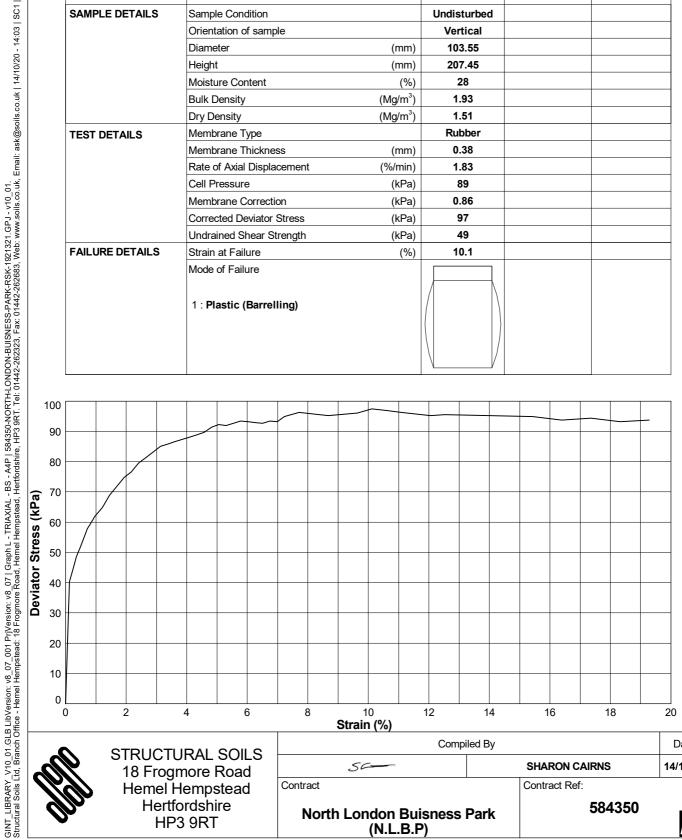
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

Contract Ref:

North London Buisness Park (N.L.B.P)


In accordance with BS1377 Part 7 Clause 8

Borehole: BH5 Sample Ref: 9 Sample Type: U Depth (m): 4.00

Description: Brown mottled orange and light grey slightly CLAY with some

gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.55		
	Height	(mm)	207.45		
	Moisture Content	(%)	28		
	Bulk Density	(Mg/m ³)	1.93		
	Dry Density	(Mg/m ³)	1.51		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement	(%/min)	1.83		
	Cell Pressure	(kPa)	89		
	Membrane Correction	(kPa)	0.86		
	Corrected Deviator Stress	(kPa)	97		
	Undrained Shear Strength	(kPa)	49		
AILURE DETAILS	Strain at Failure	(%)	10.1		
	Mode of Failure 1 : Plastic (Barrelling)				

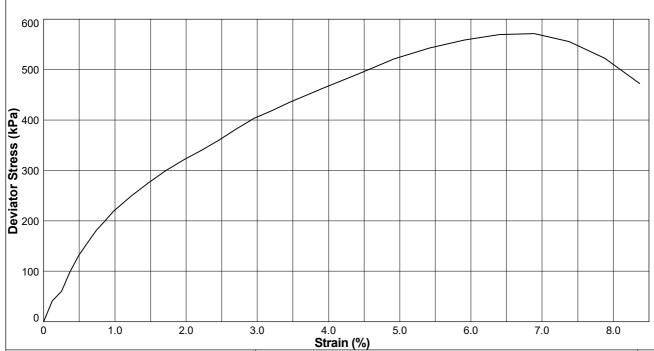
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

Contract Ref:

North London Buisness Park (N.L.B.P)



In accordance with BS1377 Part 7 Clause 8

Borehole: BH5 Sample Ref: 41 Sample Type: **U** Depth (m): 27.50

Description: Brown mottled grey slightly sandy CLAY

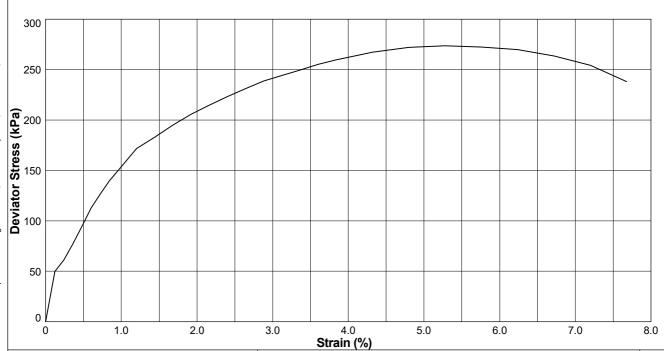
STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.74		
	Height	(mm)	203.12		
	Moisture Content	(%)	25		
	Bulk Density	(Mg/m ³)	2.03		
	Dry Density	(Mg/m³)	1.62		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement	(%/min)	1.23		
	Cell Pressure	(kPa)	550		
	Membrane Correction	(kPa)	0.63		
	Corrected Deviator Stress	(kPa)	572		
	Undrained Shear Strength	(kPa)	286		
FAILURE DETAILS	Strain at Failure	(%)	6.9		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50 Contract

Contract Ref:

North London Buisness Park (N.L.B.P)



In accordance with BS1377 Part 7 Clause 8

Borehole: BH6 19 Sample Ref: Sample Type: **U** Depth (m): 11.00

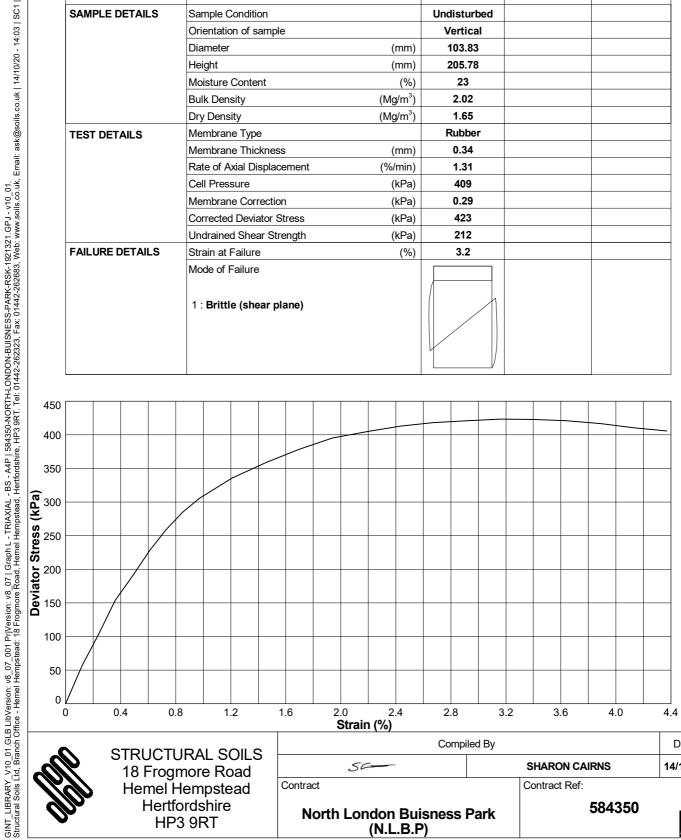
Description: Brown mottled grey CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.62		
	Height	(mm)	208.39		
	Moisture Content	(%)	25		
	Bulk Density	(Mg/m ³)	2.02		
	Dry Density	(Mg/m³)	1.61		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement	(%/min)	1.25		
	Cell Pressure	(kPa)	29		
	Membrane Correction	(kPa)	0.52		
	Corrected Deviator Stress	(kPa)	274		
	Undrained Shear Strength	(kPa)	137		
FAILURE DETAILS	Strain at Failure	(%)	5.3		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50 Contract Contract Ref:

North London Buisness Park (N.L.B.P)



In accordance with BS1377 Part 7 Clause 8

Borehole: BH6 31 Sample Ref: Sample Type: U Depth (m): 20.00

Description: Brown slightly sandy CLAY with possible gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.83		
	Height	(mm)	205.78		
	Moisture Content	(%)	23		
	Bulk Density	(Mg/m ³)	2.02		
	Dry Density	(Mg/m ³)	1.65		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.34		
	Rate of Axial Displacement	(%/min)	1.31		
	Cell Pressure	(kPa)	409		
	Membrane Correction	(kPa)	0.29		
	Corrected Deviator Stress	(kPa)	423		
	Undrained Shear Strength	(kPa)	212		
FAILURE DETAILS	Strain at Failure	(%)	3.2		
	Mode of Failure 1 : Brittle (shear plane)				

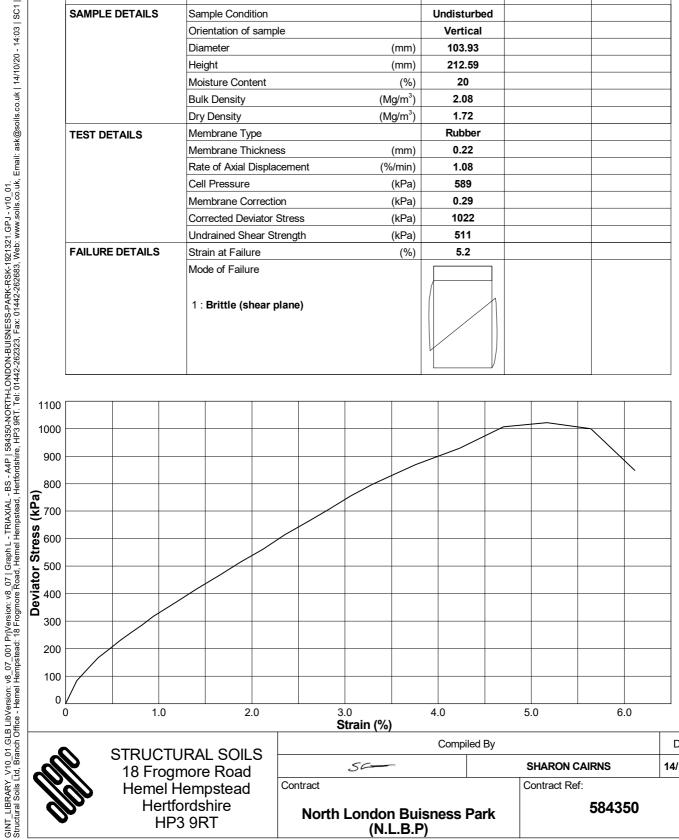
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

Contract Ref:

North London Buisness Park (N.L.B.P)



In accordance with BS1377 Part 7 Clause 8

Borehole: BH6 45 Sample Ref: Sample Type: U Depth (m): 29.00

Description: Dark brown slightly sandy CLAY with possible gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.93		
	Height	(mm)	212.59		
	Moisture Content	(%)	20		
	Bulk Density	(Mg/m ³)	2.08		
	Dry Density	(Mg/m ³)	1.72		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.22		
	Rate of Axial Displacement	(%/min)	1.08		
	Cell Pressure	(kPa)	589		
	Membrane Correction	(kPa)	0.29		
	Corrected Deviator Stress	(kPa)	1022		
	Undrained Shear Strength	(kPa)	511		
FAILURE DETAILS	Strain at Failure	(%)	5.2		
	Mode of Failure 1 : Brittle (shear plane)				

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

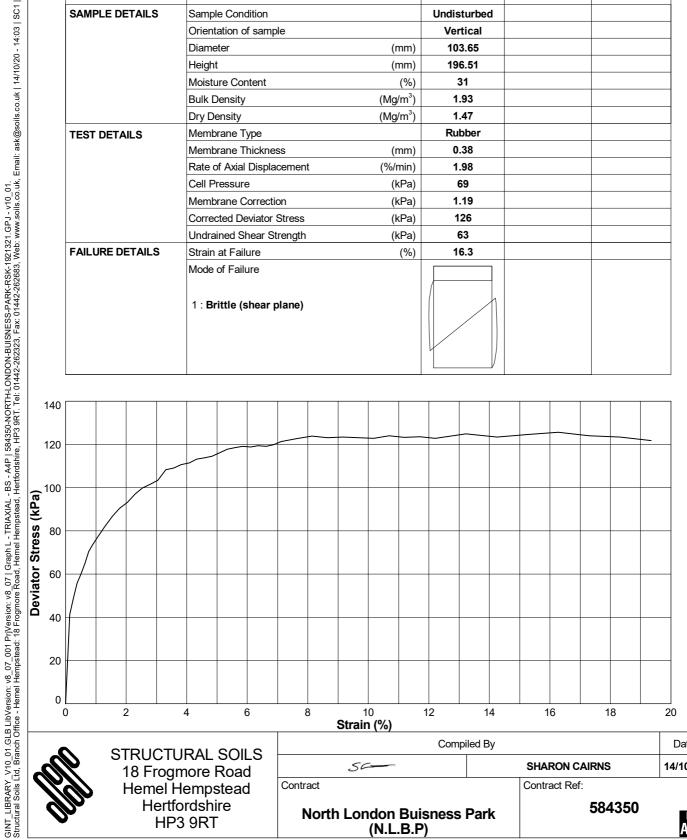
Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

Contract Ref:

584350

North London Buisness Park


(N.L.B.P)

In accordance with BS1377 Part 7 Clause 8

Borehole: BH7 Sample Ref: 4 Sample Type: U Depth (m): 3.00

Description: Orangish brown mottled bluish grey slightly sandy CLAY with some gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.65		
	Height	(mm)	196.51		
	Moisture Content	(%)	31		
	Bulk Density	(Mg/m³)	1.93		
	Dry Density	(Mg/m³)	1.47		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement	(%/min)	1.98		
	Cell Pressure	(kPa)	69		
	Membrane Correction	(kPa)	1.19		
	Corrected Deviator Stress	(kPa)	126		
	Undrained Shear Strength	(kPa)	63		
FAILURE DETAILS	Strain at Failure	(%)	16.3		
	Mode of Failure 1 : Brittle (shear plane)				

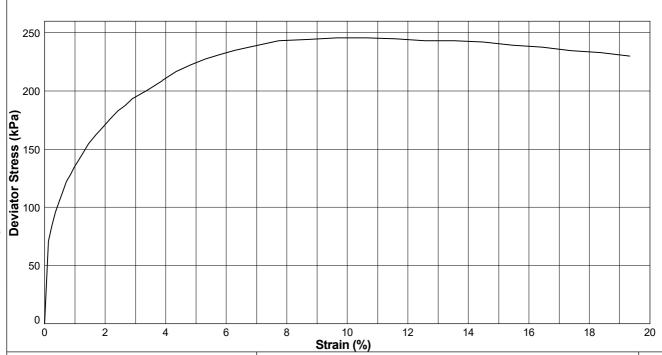
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

North London Buisness Park (N.L.B.P)

Contract Ref:



In accordance with BS1377 Part 7 Clause 8

Borehole: **BH7** Sample Ref: **12** Sample Type: **U** Depth (m): **8.00**

Description: Brown CLAY with some gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.65		
	Height	(mm)	206.98		
	Moisture Content	(%)	25		
	Bulk Density	(Mg/m ³)	2.00		
	Dry Density	(Mg/m³)	1.60		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.20		
	Rate of Axial Displacement	(%/min)	1.35		
	Cell Pressure	(kPa)	169		
	Membrane Correction	(kPa)	0.46		
	Corrected Deviator Stress	(kPa)	246		
	Undrained Shear Strength	(kPa)	123		
FAILURE DETAILS	Strain at Failure	(%)	10.6		
	Mode of Failure 1 : Brittle (shear plane)				

North London Buisness Park

(N.L.B.P)

50

Contract

STRUCTURAL SOILS

18 Frogmore Road

Hemel Hempstead Hertfordshire

HP3 9RT

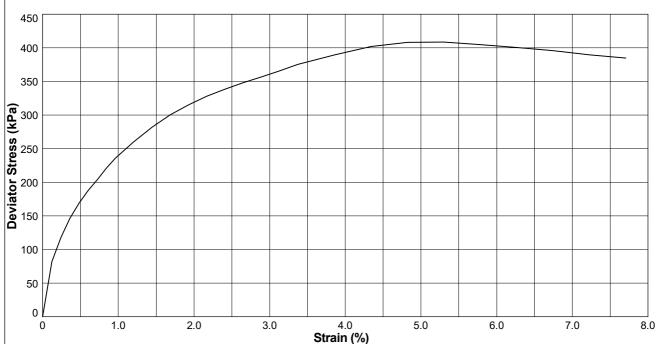
Compiled By

SHARON CAIRNS

584350

Contract Ref:

Date


14/10/20

In accordance with BS1377 Part 7 Clause 8

Borehole: BH7 Sample Ref: 24 Sample Type: U Depth (m): 17.00

Description: Dark brown slightly sandy CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.56		
	Height	(mm)	207.50		
	Moisture Content	(%)	25		
	Bulk Density	(Mg/m ³)	2.05		
	Dry Density	(Mg/m ³)	1.64		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.28		
	Rate of Axial Displacement	(%/min)	1.20		
	Cell Pressure	(kPa)	349		
	Membrane Correction	(kPa)	0.38		
	Corrected Deviator Stress	(kPa)	409		
	Undrained Shear Strength	(kPa)	204		
FAILURE DETAILS	Strain at Failure	(%)	5.3		
	Mode of Failure 1 : Brittle (shear plane)				

STRUC 18 Fr Hem He

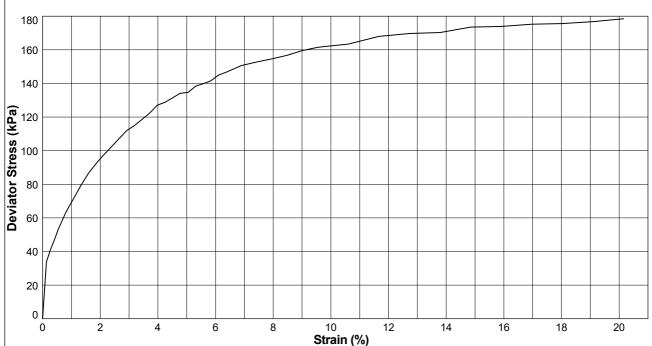
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT
 Compiled By
 Date

 SHARON CAIRNS
 14/10/20

Contract

North London Buisness Park (N.L.B.P)

Contract Ref:


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377 Part 7 Clause 8

Borehole: **BH8** Sample Ref: **6** Sample Type: **U** Depth (m): **3.00**

Description: Brown mottled orange CLAY with some gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.59		
	Height	(mm)	188.53		
	Moisture Content	(%)	27		
	Bulk Density	(Mg/m ³)	2.00		
	Dry Density	(Mg/m ³)	1.57		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.28		
	Rate of Axial Displacement	(%/min)	1.75		
	Cell Pressure	(kPa)	69		
	Membrane Correction	(kPa)	1.04		
	Corrected Deviator Stress	(kPa)	179		
	Undrained Shear Strength	(kPa)	89		
FAILURE DETAILS	Strain at Failure	(%)	20.2		
	Mode of Failure 1 : Semi-plastic (intermediate)				

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 Pryversion: v8_07 | Graph L - TRIAXIAL - BS - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01.
Structural Soils Litd, Branch Office - Hemel Hempstead: 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442-262323, Fax: 01442-262683, Web: www.soils.co.uk, Email: ask@soils.co.uk | 14/10/20 - 14:03 | SC1 |

STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Compiled By Date

SHARON CAIRNS 14/10/20

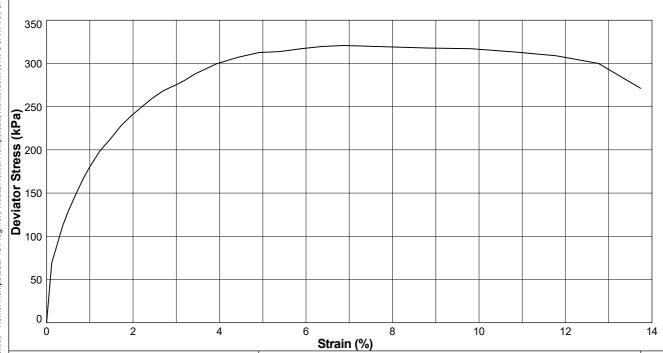
Contract

Contract Ref:

584350

North London Buisness Park

(N.L.B.P)


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377 Part 7 Clause 8

Borehole: BH8 14 Depth (m): Sample Ref: Sample Type: 8.00

Description: Brown mottled orange CLAY with some gypsum

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.71		
	Height	(mm)	203.79		
	Moisture Content	(%)	25		
	Bulk Density	(Mg/m ³)	1.98		
	Dry Density	(Mg/m ³)	1.58		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.42		
	Rate of Axial Displacement	(%/min)	1.37		
	Cell Pressure	(kPa)	169		
	Membrane Correction	(kPa)	0.69		
	Corrected Deviator Stress	(kPa)	321		
	Undrained Shear Strength	(kPa)	160		
FAILURE DETAILS	Strain at Failure	(%)	6.9		
	Mode of Failure 1 : Brittle (shear plane)				

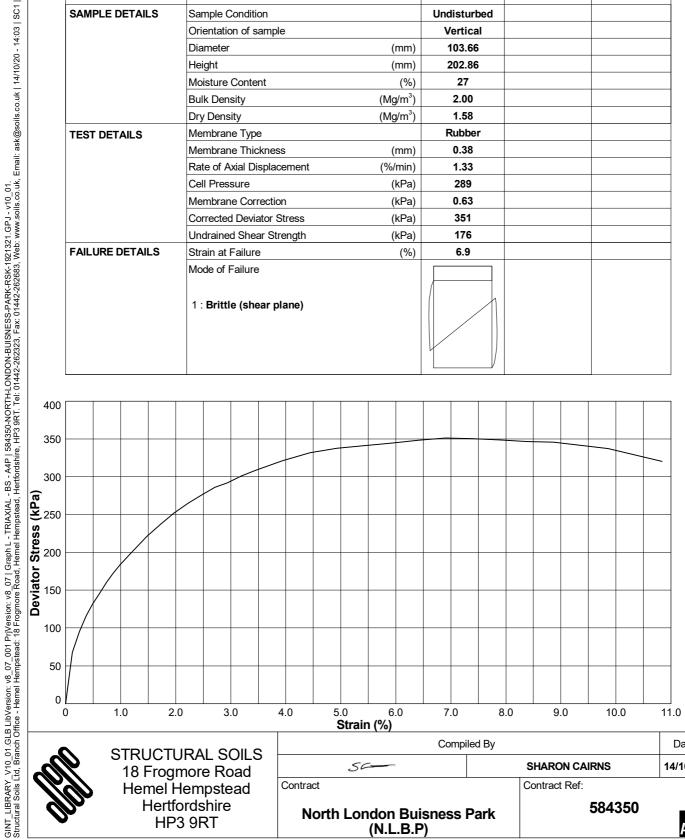
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50 Contract

Contract Ref:

North London Buisness Park (N.L.B.P)

584350


UNCONSOLIDATED QUICK UNDRAINED (SINGLE STAGE) TRIAXIAL COMPRESSION TEST

In accordance with BS1377 Part 7 Clause 8

Borehole: BH8 22 Sample Ref: Sample Type: **U** Depth (m): 14.00

Description: Brown CLAY

STAGE NUMBER			1	2	3
SAMPLE DETAILS	Sample Condition		Undisturbed		
	Orientation of sample		Vertical		
	Diameter	(mm)	103.66		
	Height	(mm)	202.86		
	Moisture Content	(%)	27		
	Bulk Density	(Mg/m³)	2.00		
	Dry Density	(Mg/m³)	1.58		
TEST DETAILS	Membrane Type		Rubber		
	Membrane Thickness	(mm)	0.38		
	Rate of Axial Displacement	(%/min)	1.33		
	Cell Pressure	(kPa)	289		
	Membrane Correction	(kPa)	0.63		
	Corrected Deviator Stress	(kPa)	351		
	Undrained Shear Strength	(kPa)	176		
FAILURE DETAILS	Strain at Failure	(%)	6.9		
	Mode of Failure 1 : Brittle (shear plane)				

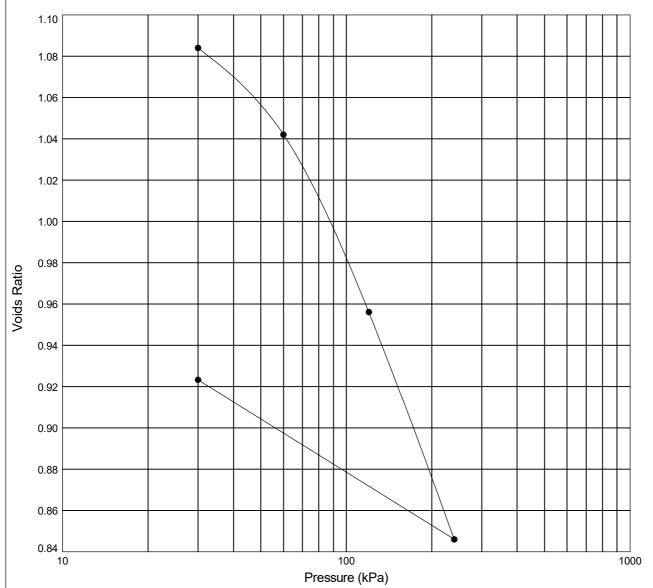
STRUCTURAL SOILS 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

Compiled By Date 14/10/20 **SHARON CAIRNS** 50

Contract

Contract Ref:

584350


North London Buisness Park

(N.L.B.P)

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07 | Graph L - 1D CONSOL DL -1- A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Soils Lid, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, J 30/11/20 - 10:19 | AF3 |

Borehole: BH2 Sample Ref: 6 Sample Type: **U** Depth (m): 3.03

Initial Specimen Condition			Final Specime	n Co	ndition
Moisture Content (%) Bulk Density (Mg/m³) Dry Density (Mg/m³) Void Ratio	: : :	44 1.77 1.23 1.116	Moisture Content (%) Bulk Density (Mg/m³) Dry Density (Mg/m³) Void Ratio	:	39 1.88 1.35 0.9233

Specimer	n Details		
Description	Height (mm)	:	18.83
Light brown CLAY	Diameter (mm) Particle Density (Mg/m³) (assumed)	:	74.92 2.60
	Swelling Pressure (kPa)	:	NA

Test Results							
Pressure	Mv	Cv	Voids				
Range (kPa)	(m²/MN)	(m²/yr)	Ratio				
0 - 30	0.50	28	1.084				
30 - 60	0.68	18	1.042				
60 - 120	0.70	5.5	0.9561				
120 - 240	0.47	0.56	0.8460				
240 - 30	NA	NA	0.9233				

Notes: Method of time-setting used: T90. Temperature range during test (degC): 18.5 - 20.9.

STRUCTURAL SOILS 1a Princess Street **Bedminster Bristol BS3 4AG**

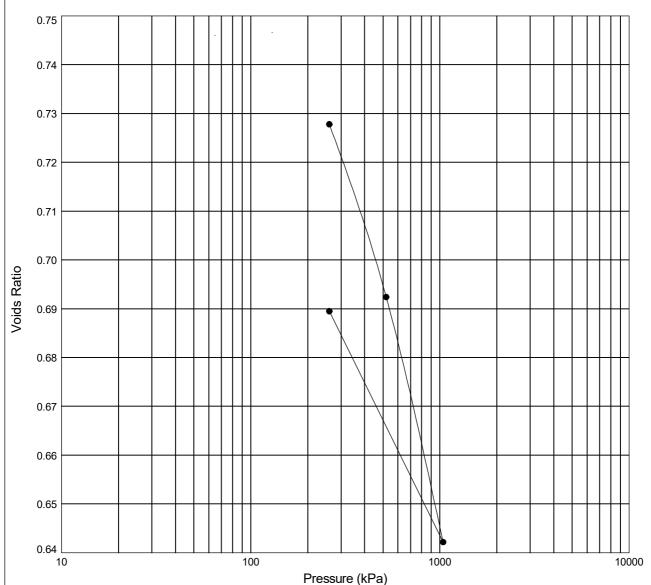
	Compiled By	
D. Mues		DA

North London Business Park

(N.L.B.P)

AISY RICHARDS 30/11/20

Contract


Contract Ref:

584350

Date

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07 | Graph L - 1D CONSOL DL -1- A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Soils Lid, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 30/11/20 - 10:22 | AF3 |

Initial Specimen Condition			Final Specime	n Co	ndition
Moisture Content (%)	:	30	Moisture Content (%)	:	29
Bulk Density (Mg/m³)	:	1.96	Bulk Density (Mg/m³)	:	2.03
Dry Density (Mg/m³)	:	1.51	Dry Density (Mg/m³)	:	1.57
Void Ratio	:	0.7517	Void Ratio	:	0.6895

Void Ratio	: 0.7517	Void Ratio :		0.6895		
Specimen Details						
Des	scription	Height (mm)	:	19.02		
Yellowish brown CLAY with some gypsum		Diameter (mm) Particle Density (Mg/m³) (assumed)	:	74.97 2.65		
		Swelling Pressure (kPa)	:	NA		

	Test Results								
Pressure Range (kPa)	Mv (m²/MN)	Cv (m²/yr)	Voids Ratio						
0 - 65 65 - 130 130 - 260 260 - 520 520 - 1040 1040 - 260	Sample	Swelling Swelling 10 2.0 3.0 NA	0.7460 0.7466 0.7278 0.6924 0.6422 0.6895						
1040 - 200			0.0033						

6.59

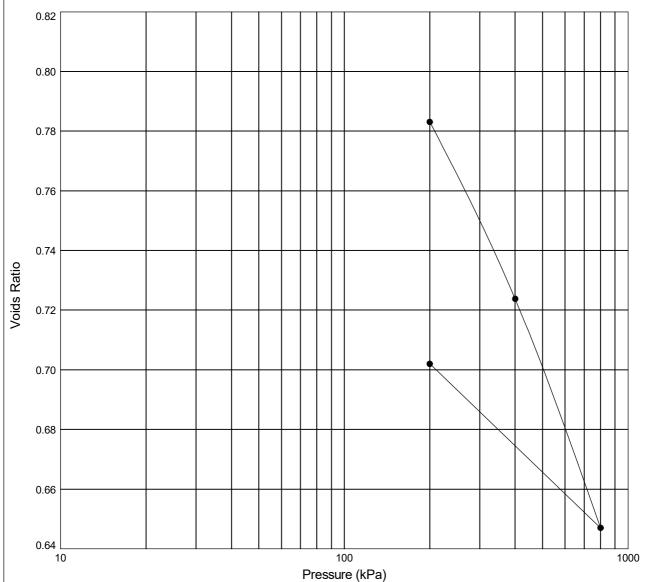
Notes: Method of time-setting used: **T90**. Temperature range during test (degC): **18 - 21.3**.

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

Com	piled By
D. Mess	DAISY RICHARDS
Contract	Contract Ref:

North London Business Park (N.L.B.P)

584350


AGS

Date

30/11/20

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07 | Graph L - 1D CONSOL DL -1- A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Soils Lid, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, J 30/11/20 - 10:23 | AF3 |

Initial Specimen Condition			Final Specime	n Co	ndition	
Moisture Content (%)	:	32	Moisture Content (%)	:	31	
Bulk Density (Mg/m³)	:	1.91	Bulk Density (Mg/m³)	:	2.04	
Dry Density (Mg/m³)	:	1.45	Dry Density (Mg/m³)	:	1.56	
Void Ratio	:	0.8285	Void Ratio	:	0.7020	
0 : 0 : 1						

	Specimen	Details			
Description		Height (mm)	:	19.04	
Brown CLAY with some	gypsum	Diameter (mm) Particle Density (Mg/m³) (assumed)	:	74.88 2.65	
		Swelling Pressure (kPa)	:	NA	

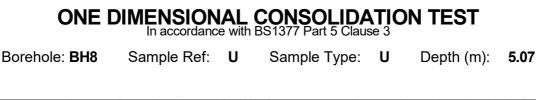
Test Results					
Pressure Range (kPa)	Mv (m²/MN)	Cv (m²/yr)	Voids Ratio		
0 - 50 50 - 100 100 - 200 200 - 400 400 - 800 800 - 200	•	Swelling Swelling 12 34 17 NA	0.8200 0.8173 0.7831 0.7238 0.6470 0.7020		

Notes: Method of time-setting used: **T90.** Temperature range during test (degC): **17.4 - 21.3.**

STRUCTURAL SOILS 1a Princess Street Bedminster Bristol BS3 4AG

	Compi	led By
1122		
Contract		

Date
THOMAS DAVIES 30/11/20


584350


North London Business Park (N.L.B.P)

Contract Ref:

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07 | Graph L - 1D CONSOL DL -1- A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Soils Lid, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, J 30/11/20 - 10:23 | AF3 |

Initial Specimen Condition		Final Specime	n Co	ndition	
Moisture Content (%)	:	26	Moisture Content (%)	:	27
Bulk Density (Mg/m³)	:	2.02	Bulk Density (Mg/m³)	:	2.06
Dry Density (Mg/m³)	:	1.60	Dry Density (Mg/m³)	:	1.62
Void Ratio	:	0.6516	Void Ratio	:	0.6398

void Ralio	. 0.6516	Void Ralio :		0.6398
Descrip	otion	Height (mm)	:	19.02
Yellowish brown C occasional gypsun		Diameter (mm) Particle Density (Mg/m³) (assumed)	:	75.00 2.65
		Swelling Pressure (kPa)	:	NA

Test Results				
Pressure Range (kPa)	Mv (m²/MN)	Cv (m²/yr)	Voids Ratio	
0 - 50 50 - 100	0.082	Swelling 44	0.6440 0.6373	
100 - 200 200 - 400 400 - 50	0.14 0.10 NA	18 19 NA	0.6141 0.5811 0.6398	
400 - 50	NA	NA	0.6396	

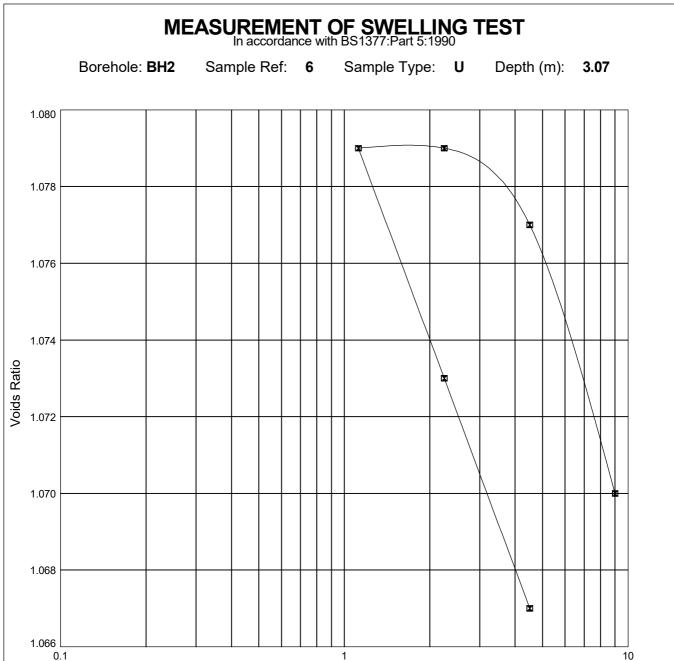
Notes: Method of time-setting used: **T90**. Temperature range during test (degC): **18 - 21.4**.

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

	П		1
0	> W 1	000	X,

Date
DAISY RICHARDS 30/11/20

Contract


North London Business Park (N.L.B.P)

Compiled By

Contract Ref: 584350

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07 | Graph L - 1D CONSOL DL -3-SWELLING - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Strotuctural Solis Lid, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.solis.co.uk, Email: ask@solis.co.uk, | 30/11/20 - 10:26 | AF3 |

Initial Specimen Condition		Final Specime	n Coı	ndition	
Moisture Content (%)	:	42	Moisture Content (%)	:	43
Bulk Density (Mg/m³)	:	1.79	Bulk Density (Mg/m³)	-	1.80
Dry Density (Mg/m³)	:	1.26	Dry Density (Mg/m³)	:	1.26
Void Ratio	:	1.061	Void Ratio	:	1.070
		Specim	en Details		

Specimer	n Details		
Description	Height (mm)	:	15.00
Light brown CLAY	Diameter (mm) Particle Density (Mg/m³) (assumed)	:	74.91 2.60
	Swelling Pressure (kPa)	:	9

Test Results				
Pressure Range (kPa)	Mv (m²/MN)	Cv (m²/yr)	Voids Ratio	
9 - 4.5	NA	NA	1.067	
4.5 - 2.25 2.25 - 1.12	NA NA	NA NA	1.073 1.079	
1.12 - 2.25 2.25 - 4.5	0.23 0.47	2.2 1.3	1.079 1.077	
4.5 - 9	0.66	5.1	1.070	

Notes: Method of time-setting used: **T90.** Temperature range during test (degC): **16.1 - 21.1.**

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

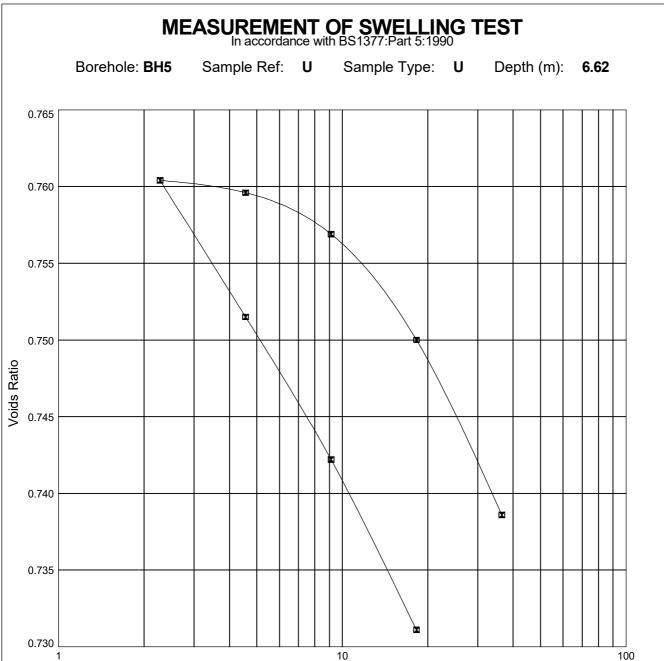
	Л	1
0	WILO	0 c X
9	Vue	لحا

Pressure (kPa)

Date
DAISY RICHARDS 30/11/20

Contract

Contract Ref:


North London Business Park (N.L.B.P)

Compiled By

584350

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07 | Graph L - 1D CONSOL DL -3-SWELLING - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Strotuctural Solis Lid, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.solis.co.uk, Email: ask@solis.co.uk, | 30/11/20 - 10:27 | AF3 |

Initial Specimen Condition		Final Specimen C	ondition	
Moisture Content (%) Bulk Density (Mg/m³) Dry Density (Mg/m³) Void Ratio	: 28 : 1.97 : 1.54 : 0.7228	Moisture Content (%) : Bulk Density (Mg/m³) : Dry Density (Mg/m³) : Void Ratio :	31 2.00 1.53 0.7386	
Specimen Details				
Description		Height (mm)	: 14.97	
Yellowish brown CLAY with some gypsum		Diameter (mm) Particle Density (Mg/m³) (assumed)	: 75.00 : 2.65	
		Swelling Pressure (kPa)	: 36.5	

Test Results							
Pressure Range (kPa)	Mv (m²/MN)	Cv (m²/yr)	Voids Ratio				
36.5 - 18.25	NA	NA	0.7311				
18.25 - 9.12	NA	NA	0.7422				
9.12 - 4.56	NA	NA	0.7515				
4.56 - 2.28	NA	NA	0.7604				
2.28 - 4.56	0.20	1.3	0.7596				
4.56 - 9.12	0.34	3.4	0.7569				
9.12 - 18.25	0.43	3.8	0.7500				
18.25 - 36.5	0.36	6.4	0.7386				

Notes: Method of time-setting used: **T90.** Temperature range during test (degC): **16.1 - 21.3.**

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

	Л	- 1
0	WLL	X co
	1000	

Pressure (kPa)

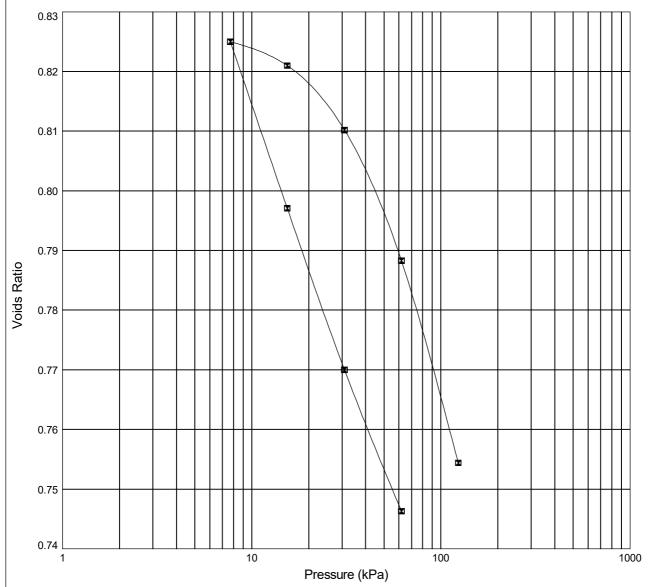
Date
DAISY RICHARDS 30/11/20

584350

Contract

North London Business Park (N.L.B.P)

Compiled By


Contract Ref:

AG

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07 | Graph L - 1D CONSOL DL -3-SWELLING - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Soils Lid, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk. | 03/12/20 - 10:34 | AF3 |

Borehole: BH6 Sample Ref: **U** Sample Type: Depth (m): 5.10

Initial Specimen Condition			Final Specimen Condition			
29	Moisture Content (%)	:	31			
1.98	Bulk Density (Mg/m³)	:	1.99			
1.53	Dry Density (Mg/m³)	:	1.52			
0.7291	Void Ratio	:	0.7544			
	29 1.98 1.53	29 Moisture Content (%) 1.98 Bulk Density (Mg/m³) 1.53 Dry Density (Mg/m³)	29 Moisture Content (%) : 1.98 Bulk Density (Mg/m³) : 1.53 Dry Density (Mg/m³) :			

Void Ratio	: 0.7291	Void Ratio :	0.	.7544
	Specimer	n Details		
De	scription	Height (mm)		15.11
Brown CLAY wi	ith some gypsum	Diameter (mm) Particle Density (Mg/m³) (assumed)	:	74.97 2.65
		Swelling Pressure (kPa)	:	123.5

Test Results							
Pressure	Μv	Cv	Voids				
Range (kPa)	(m²/MN)	(m²/yr)	Ratio				
123.5 - 61.8	NA	NA	0.7463				
61.8 - 30.9	NA	NA	0.7700				
30.9 - 15.4	NA	NA	0.7971				
15.4 - 7.7	NA	NA	0.8250				
7.7 - 15.4	0.29	10	0.8210				
15.4 - 30.9	0.38	0.73	0.8102				
30.9 - 61.8	0.39	0.27	0.7883				
61.8 - 123.5	0.31	0.35	0.7544				

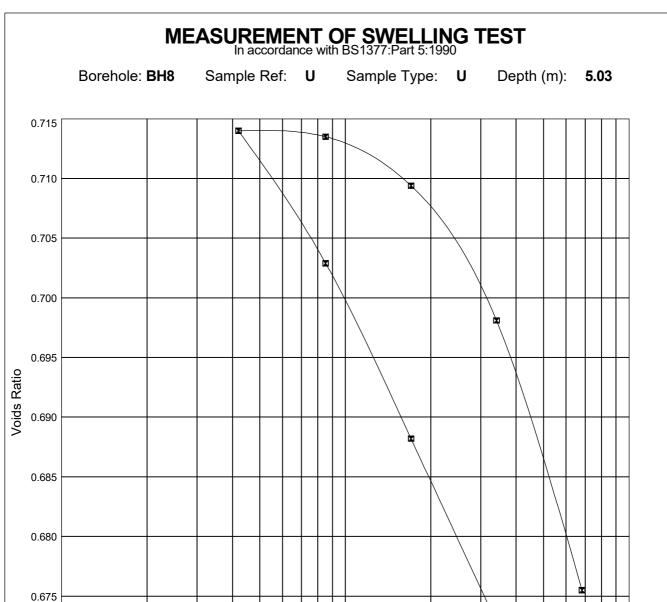
Notes: Method of time-setting used: T90. Temperature range during test (degC): 16.1 - 21.2.

Contract

STRUCTURAL SOILS 1a Princess Street **Bedminster Bristol BS3 4AG**

Compiled By			
Seem. O	DAISY RICHARDS	03/12/20	

North London Business Park (N.L.B.P)


Contract Ref:

584350

GINT_LIBRARY V10_01.GLB LibVersion: v8_07_001 PrIVersion: v8_07 | Graph L - 1D CONSOL DL -3-SWELLING - A4P | 584350-NORTH-LONDON-BUISNESS-PARK-RSK-1921321.GPJ - v10_01. Structural Soils Lid, Branch Office - Bristol Lab: 1a Princess Street, Bedminster, Bristol, BS3 4AG. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk, | 30/11/20 - 10:29 | AF3 |

0.670

Initial Specimen Condition			Final Specimen Condition				
Moisture Content (%)	:	26	Moisture Content (%)	:	29		
Bulk Density (Mg/m³)	:	2.01	Bulk Density (Mg/m³)	:	2.04		
Dry Density (Mg/m³)	:	1.60	Dry Density (Mg/m³)	:	1.58		
Void Ratio	:	0.6591	Void Ratio	:	0.6755		
			•				

Void Ratio	: 0.6591	Void Ratio :		0.6755
	Specime	n Details		
Des	scription	Height (mm)	:	15.15
Yellowish brown occasional gyps		Diameter (mm) Particle Density (Mg/m³) (assumed)	:	75.88 2.65
		Swelling Pressure (kPa)	:	68.2

Test Results								
Pressure	Mv	Cv	Voids					
Range (kPa)	(m²/MN)	(m²/yr)	Ratio					
68.2 - 34.1	NA	NA	0.6728					
34.1 - 17.05	NA	NA	0.6882					
17.05 - 8.52	NA	NA	0.7029					
8.52 - 4.2	NA	NA	0.7140					
4.2 - 8.52	0.059	6.6	0.7135					
8.52 - 17.05	0.28	3.3	0.7094					
17.05 - 34.1	0.39	2.2	0.6981					
34.1 - 68.2	0.39	2.0	0.6755					

×

Notes: Method of time-setting used: **T90.** Temperature range during test (degC): **17.4 - 21.5.**

STRUCTURAL SOILS
1a Princess Street
Bedminster
Bristol
BS3 4AG

	П	11
0	V/ 1 0	n - X
	· IV	يعد

10

Pressure (kPa)

Date

DAISY RICHARDS 30/11/20

Contract

Contract Ref:

584350

100

Compiled By

APPENDIX L LABORATORY CERTIFICATES FOR SURFACE WATER ANALYSIS

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/08709

Issue Number: Date: 27 October, 2020

Client: **RSK Environment Ltd Hemel**

> 18 Frogmore Road Hemel Hempstead

Hertfordshire

UK

HP3 9RT

Project Manager: Alex Marcelo

Project Name: North London Business Park (N.L.B.P)

Project Ref: 1921321 Order No: N/A

14/10/20 **Date Samples Received: Date Instructions Received:** 14/10/20 24/10/20 **Date Analysis Completed:**

Prepared by: Approved by:

Melanie Marshall

Marshall

Danielle Brierley Laboratory Coordinator Client Manager

Envirolab Job Number: 20/08709 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Lab Sample ID	20/08709/1	20/08709/2					
Client Sample No							
Client Sample ID	SWS1	SWS2					
Depth to Top							
Depth To Bottom						<u>io</u>	
Date Sampled	09-Oct-20	09-Oct-20				Limit of Detection	<u>.</u>
Sample Type	Water - EW	Water - EW				of D	Method ref
Sample Matrix Code	N/A	N/A			Units	Limit	Meth
pH (w) _A #	7.71	7.65			рН	0.01	A-T-031w
Sulphate (w) _A #	41	41			mg/l	1	A-T-026w
Arsenic (dissolved) _A #	<1	<1			μg/l	1	A-T-025w
Cadmium (dissolved) _A #	<0.2	<0.2			μg/l	0.2	A-T-025w
Copper (dissolved) _A #	2	3			μg/l	1	A-T-025w
Chromium (dissolved) _A #	<1	2			μg/l	1	A-T-025w
Lead (dissolved) _A #	1	<1			μg/l	1	A-T-025w
Mercury (dissolved) _A #	<0.1	<0.1			μg/l	0.1	A-T-025w
Nickel (dissolved) _A #	2	2			μg/l	1	A-T-025w
Selenium (dissolved) _A #	1	1			μg/l	1	A-T-025w
Zinc (dissolved) _A #	2	7			μg/l	1	A-T-025w

Envirolab Job Number: 20/08709 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

				 ject Kei. 13			
Lab Sample ID	20/08709/1	20/08709/2					
Client Sample No							
Client Sample ID	SWS1	SWS2					
Depth to Top							
Depth To Bottom						io	
Date Sampled	09-Oct-20	09-Oct-20				Limit of Detection	.
Sample Type	Water - EW	Water - EW			,		Method ref
Sample Matrix Code	N/A	N/A			Units	Ë	Meth
PAH 16MS (w)							
Acenaphthene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Acenaphthylene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Anthracene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(a)anthracene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(a)pyrene (w) _A #	0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(b)fluoranthene (w) _A #	0.02	<0.01			μg/l	0.01	A-T-019w
Benzo(ghi)perylene (w) _A #	0.01	<0.01			μg/l	0.01	A-T-019w
Benzo(k)fluoranthene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Chrysene (w) _A #	0.02	<0.01			μg/l	0.01	A-T-019w
Dibenzo(ah)anthracene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Fluoranthene (w) _A #	0.02	<0.01			μg/l	0.01	A-T-019w
Fluorene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Indeno(123-cd)pyrene (w) _A #	0.02	<0.01			μg/l	0.01	A-T-019w
Naphthalene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Phenanthrene (w) _A #	<0.01	<0.01			μg/l	0.01	A-T-019w
Pyrene (w) _A #	0.02	<0.01			μg/l	0.01	A-T-019w
Total PAH 16MS (w) _A #	0.12	<0.01			μg/l	0.01	A-T-019w

Envirolab Job Number: 20/08709 Client Project Name: North London Business Park (N.L.B.P)

Client Project Ref: 1921321

			ject iver. 13	ect Ref: 1921321					
Lab Sample ID	20/08709/1	20/08709/2					Units	Limit of Detection	Method ref
lient Sample No									
Client Sample ID	SWS1	SWS2							
Depth to Top									
Depth To Bottom									
Date Sampled	09-Oct-20	09-Oct-20							
Sample Type	Water - EW	Water - EW							
Sample Matrix Code	N/A	N/A							
TPH CWG (w)									
Ali >C5-C6 (w) _A #	<1	<1					μg/l	1	A-T-022w
Ali >C6-C8 (w) _A #	<1	<1					μg/l	1	A-T-022w
Ali >C8-C10 (w) _A #	<5	<5					μg/l	5	A-T-055w
Ali >C10-C12 (w) _A #	<5	<5					μg/l	5	A-T-055w
Ali >C12-C16 (w) _A #	<5	<5					μg/l	5	A-T-055w
Ali >C16-C21 (w) _A #	<5	<5					μg/l	5	A-T-055w
Ali >C21-C35 (w) _A #	15	<5					μg/l	5	A-T-055w
Total Aliphatics (w) _A #	15	<5					μg/l	5	A-T-055w
Aro >C5-C7 (w) _A #	<1	<1					μg/l	1	A-T-022w
Aro >C7-C8 (w) _A #	<1	<1					μg/l	1	A-T-022w
Aro >C8-C10 (w) _A	<5	<5					μg/l	5	A-T-055w
Aro >C10-C12 (w) _A #	<5	<5					μg/l	5	A-T-055w
Aro >C12-C16 (w) _A #	<5	<5					μg/l	5	A-T-055w
Aro >C16-C21 (w) _A #	7	<5					μg/l	5	A-T-055w
Aro >C21-C35 (w) _A #	29	<10					μg/l	10	A-T-055w
Total Aromatics (w) _A	36	<10					μg/l	10	A-T-055w
TPH (Ali & Aro >C5-C35) (w) _A	51	<10					μg/l	10	A-T-055w
BTEX - Benzene (w) _A #	<1	<1					μg/l	1	A-T-022w
BTEX - Toluene (w) _A #	<1	<1					μg/l	1	A-T-022w
BTEX - Ethyl Benzene (w) _A #	<1	<1					μg/l	1	A-T-022w
BTEX - m & p Xylene (w) _A #	<1	<1					μg/l	1	A-T-022w
BTEX - o Xylene (w) _A #	<1	<1					μg/l	1	A-T-022w
MTBE (w) _A #	<1	<1					μg/l	1	A-T-022w

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Kοv-

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Hemel, 18 Frogmore Road, Hemel Hempstead, Project No: 20/08709

Hertfordshire, UK, HP3 9RT

Date Received: 14/10/2020 (am)

Project: North London Business Park (N.L.B.P) Cool Box Temperatures (°C): 9.6

Clients Project No: 1921321

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

APPENDIX M GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH

Generic assessment criteria for human health: residential scenario with home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the C4SL exposure modifications, with the exception of the "top two" produce type approach taken in the C4SL, have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) for residential land use, reducing exposure frequency for dermal contact outdoors for residential land use, and updated produce type consumption rates (90th percentile) based on recent data from the National Diet and Nutrition Survey.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential with home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential with home-grown produce scenario are

direct soil and dust ingestion